Danh mục

ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN - ĐỀ SỐ 11

Số trang: 3      Loại file: doc      Dung lượng: 199.50 KB      Lượt xem: 11      Lượt tải: 0    
10.10.2023

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (3 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề ôn thi đại học môn toán - đề số 11, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN - ĐỀ SỐ 11 Đề số 11I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x +1Câu I: (2 điểm) Cho hàm số y = (C). x −1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm trên trục tung tất cả các điểm từ đó kẻ được duy nhất một tiếp tuyến tới (C).Câu II: (2 điểm) 1) Giải phương trình: log 2 ( x 2 + 1) + ( x 2 − 5) log( x 2 + 1) − 5 x 2 = 0 2) Tìm nghiệm của phương trình: cos x + cos 2 x + sin 3 x = 2 thoả mãn : x − 1 < 3 1 I = x ln( x 2 + x + 1)dxCâu III: (1 điểm) Tính tích phân: 0Câu IV: (1 điểm) Cho hình lăng trụ đứng ABC.A’B’C’ có ∆ ABC là tam giác vuông tại B và AB = a, BC = b, AA’ = c ( c 2 a 2 + b2 ). Tính diện tích thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P) đi qua A và vuông góc với CA′ .Câu V: (1 điểm) Cho các số thực x, y, z (0;1) và xy + yz + zx = 1 . Tìm giá trị nhỏ nhất của biểu x y z P= + + thức: 1 − x 1 − y 1 − z2 2 2II. PHẦN RIÊNG (3 điểm): A. Theo chương trình chuẩn:Câu VI.a: (2 điểm) 1) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng (d) có phương trình: { x = −t ; y = −1 + 2t ; z = 2 + t ( t R ) và mặt phẳng (P): 2 x − y − 2 z − 3 = 0 .Viết phương trình tham số của đường thẳng ∆ nằm trên (P), cắt và vuông góc với (d). x2 y2 + = 1 . Viết phương trình đường 2) Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): 9 4 thẳng d đi qua I(1;1) cắt (E) tại 2 điểm A và B sao cho I là trung điểm của AB. z − w − zw = 8Câu VII.a: (1 điểm) Giải hệ phương trình sau trên tập số phức: z 2 + w2 = −1 B. Theo chương trình nâng cao:Câu VI.b: (2 điểm) 1) Trong không gian với hệ toạ độ Oxyz, cho 4 điểm A(2;4;–1), B(1;4;–1), C(2;4;3), D(2;2;–1). Tìm tọa độ điểm M để MA2 + MB2 + MC2 + MD2 đạt giá trị nhỏ nhất. 2) Trong mặt phẳng với hệ tọa độ Oxy, cho D ABC cân có đáy là BC. Đỉnh A có tọa độ là các số dương, hai điểm B và C nằm trên trục Ox, phương trình cạnh AB : y = 3 7(x - 1) . Biết chu vi của D ABC bằng 18, tìm tọa độ các đỉnh A, B, C. x + x 2 − 2 x + 2 = 3 y −1 + 1Câu VII.b: (1 điểm) Giải hệ phương trình: ( x, y R) y + y 2 − 2 y + 2 = 3x −1 + 1 Hướng dẫn Đề sô 11Câu I: Sử dụng điều kiện tiếp xúc ⇒ M(0;1) và M(0;–1)Câu II: 1) Đặt log( x 2 + 1) = y . PT ⇔ y 2 + ( x 2 − 5) y − 5 x 2 = 0 � y = 5 �y = − x 2 Nghiệm: x = 99999 ; x = 0 2) PT ⇔ (cos x − 1)(cos x − sin x − sin x.cos x + 2) = 0 ⇔ x = k 2π . Vì x − 1 < 3 � −2 < x < 4 nên nghiệm là: x = 0 31 u = ln( x 2 + x + 1) 3 1 ⇒ I = ln3 − dx .Câu III: Đặt dv = xdx 4 0 x2 + x +1 4 1 1 1 1 dx = � �2 dx 2 Tính I1 = 0 x + x + 1 0� 1� �3� . 2 � + �+ � � x � 2 � �2 � �π π � 1 3 3. Đặt x + = tant , t � − , � I1 = ⇒ π � 22 � 2 2� 9 3π 3 Vậy: I = ln 3 − . 4 12Câu IV: Std = ab a + b + c 2 2 2 2cCâu V: Vì 0 < x < 1 � 1 − x 2 > 0 Áp dụng BĐT Côsi ta có: 2 2 x 2 + (1 − x 2 ) + (1 − x 2 ) 3 2 2 x 332 − −� = 2 x (1 x 2 )2 x(1 x 2 ) x 3 3 1 − x2 ...

Tài liệu được xem nhiều: