Đề thi ôn thi đại học môn toán - Đề số 21
Số trang: 8
Loại file: pdf
Dung lượng: 160.52 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu đề thi ôn thi đại học môn toán - đề số 21, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi ôn thi đại học môn toán - Đề số 21 Đề số 21I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I: (2 điểm) Cho hàm số y x3 2mx2 (m 3) x 4 có đồ thị là (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2) Cho đường thẳng (d): y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m sao cho (d) cắt (C m) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 .Câu II: (2 điểm) 1) Giải bất phương trình: 15.2 x 1 1 2 x 1 2 x 1 2) Tìm m để phương trình: 4(log 2 x ) 2 log 0,5 x m 0 có nghiệm thuộc (0, 1). 3 dxCâu III: (2 điểm) Tính tích phân: I = . x 6 (1 x 2 ) 1Câu IV: (1 điểm) Tính thể tích của hình chóp S.ABC, biết đáy ABC là một tam giác đều cạnh a, mặt bên (SAB) vuông góc với đáy, hai mặt bên còn lại cùng tạo với đáy góc α. cos xCâu V: (1 điểm) Tìm giá trị nhỏ nhất của hàm số: y = với 0 < 2 sin x(2cos x sin x ) x . 3II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩnCâu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(2;–3), B(3;–2), ABC 3 có diện tích bằng ; trọng tâm G của ABC thuộc đường thẳng (d): 3x – y 2 – 8 = 0. Tìm bán kính đường tròn nội tiếp ABC. 2) Trong không gian với hệ toạ độ Oxyz, cho điểm A(1; –2; 3) và đường x 1 y 2 z 3 thẳng d có phương trình . Tính khoảng cách từ điểm A 1 2 1 đến đường thẳng d. Viết phương trình mặt cầu tâm A, tiếp xúc với d. z2Câu VII.a (1 điểm) Giải phương trình z 4 z 3 z 1 0 trên tập số phức. 2 B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình tiếp tuyến chung của hai đường tròn (C1): x2 + y2 – 2x – 2y – 2 = 0, (C2): x2 + y2 – 8x – 2y + 16 = 0. 2) Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng: x t x t (d1) : y 4 t ; (d2) : y 3t 6 và z 6 2t z t 1 Gọi K là hình chiếu vuông góc của điểm I(1; –1; 1) trên (d2). Tìm phương trình tham số của đường thẳng đi qua K vuông góc với (d1) và cắt (d1). 0 1 2 2009Câu VII.b (1 điểm) Tính tổng S C2009 2C2009 3C2009 ... 2010C2009 . Hướng dẫn Đề số 21 2) Phương trình độ giao điểm của (Cm)Câu I: hoành và d: x 3 2mx 2 ( m 3) x 4 x 4 (1) x 0 (1) x ( x 2 2mx m 2) 0 2 g ( x) x 2mx m 2 0 (2) (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C (2) có 2 nghiệm phân biệt khác 0. m 2 m 2 0 m 1 m 2 (a ) . m 2 g (0) m 2 0 1 3 4 Mặt khác: d ( K , d ) 2 2 1 Do đó: S KBC 8 2 BC.d ( K , d ) 8 2 BC 16 BC 2 256 2 ( xB xC ) 2 ( y B yC )2 256 với xB , xC là hai nghiệm của phương trình (2). ( xB xC ) 2 (( xB 4) ( xC 4)) 2 256 2( xB xC ) 2 256 ( xB xC )2 4 xB xC 128 1 137 4m2 4( m 2) 128 m2 m 34 0 m ...
Nội dung trích xuất từ tài liệu:
Đề thi ôn thi đại học môn toán - Đề số 21 Đề số 21I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I: (2 điểm) Cho hàm số y x3 2mx2 (m 3) x 4 có đồ thị là (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2) Cho đường thẳng (d): y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m sao cho (d) cắt (C m) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 .Câu II: (2 điểm) 1) Giải bất phương trình: 15.2 x 1 1 2 x 1 2 x 1 2) Tìm m để phương trình: 4(log 2 x ) 2 log 0,5 x m 0 có nghiệm thuộc (0, 1). 3 dxCâu III: (2 điểm) Tính tích phân: I = . x 6 (1 x 2 ) 1Câu IV: (1 điểm) Tính thể tích của hình chóp S.ABC, biết đáy ABC là một tam giác đều cạnh a, mặt bên (SAB) vuông góc với đáy, hai mặt bên còn lại cùng tạo với đáy góc α. cos xCâu V: (1 điểm) Tìm giá trị nhỏ nhất của hàm số: y = với 0 < 2 sin x(2cos x sin x ) x . 3II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩnCâu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(2;–3), B(3;–2), ABC 3 có diện tích bằng ; trọng tâm G của ABC thuộc đường thẳng (d): 3x – y 2 – 8 = 0. Tìm bán kính đường tròn nội tiếp ABC. 2) Trong không gian với hệ toạ độ Oxyz, cho điểm A(1; –2; 3) và đường x 1 y 2 z 3 thẳng d có phương trình . Tính khoảng cách từ điểm A 1 2 1 đến đường thẳng d. Viết phương trình mặt cầu tâm A, tiếp xúc với d. z2Câu VII.a (1 điểm) Giải phương trình z 4 z 3 z 1 0 trên tập số phức. 2 B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình tiếp tuyến chung của hai đường tròn (C1): x2 + y2 – 2x – 2y – 2 = 0, (C2): x2 + y2 – 8x – 2y + 16 = 0. 2) Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng: x t x t (d1) : y 4 t ; (d2) : y 3t 6 và z 6 2t z t 1 Gọi K là hình chiếu vuông góc của điểm I(1; –1; 1) trên (d2). Tìm phương trình tham số của đường thẳng đi qua K vuông góc với (d1) và cắt (d1). 0 1 2 2009Câu VII.b (1 điểm) Tính tổng S C2009 2C2009 3C2009 ... 2010C2009 . Hướng dẫn Đề số 21 2) Phương trình độ giao điểm của (Cm)Câu I: hoành và d: x 3 2mx 2 ( m 3) x 4 x 4 (1) x 0 (1) x ( x 2 2mx m 2) 0 2 g ( x) x 2mx m 2 0 (2) (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C (2) có 2 nghiệm phân biệt khác 0. m 2 m 2 0 m 1 m 2 (a ) . m 2 g (0) m 2 0 1 3 4 Mặt khác: d ( K , d ) 2 2 1 Do đó: S KBC 8 2 BC.d ( K , d ) 8 2 BC 16 BC 2 256 2 ( xB xC ) 2 ( y B yC )2 256 với xB , xC là hai nghiệm của phương trình (2). ( xB xC ) 2 (( xB 4) ( xC 4)) 2 256 2( xB xC ) 2 256 ( xB xC )2 4 xB xC 128 1 137 4m2 4( m 2) 128 m2 m 34 0 m ...
Tìm kiếm theo từ khóa liên quan:
Đề ôn thi đại học đề thi toán học tuyển sinh năm 2011 đề thi năm 2011 ôn thi môn toánGợi ý tài liệu liên quan:
-
Tài liệu ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán: Phần 2
135 trang 77 0 0 -
Lời giải đề thi học sinh giỏi quốc gia môn toán học
21 trang 36 0 0 -
82 trang 30 0 0
-
Tuyển tập 30 đề luyện thi đại học môn Vật lí
338 trang 30 0 0 -
Tuyển tập phiếu ôn tập thi THPT Quốc gia môn Toán
39 trang 28 0 0 -
Đề thi tốt nghiệp THPT năm học 2004-2005 môn Toán
1 trang 27 0 0 -
Kỳ thi THPT Quốc gia năm 2015 môn Toán
50 trang 26 0 0 -
Tuyển tập 150 đề thi thử đại học môn Toán hay nhất
134 trang 25 0 0 -
Đề thi thử đại học môn toán năm 2013 - THPT Lý Thường Kiệt - Hải Phòng - Đề số 48
1 trang 23 0 0 -
THI TUYỂN SINH VÀO LỚP 10 CHUYÊN TỈNH ĐỒNG NAI NĂM HỌC 2012 - 2013 Môn thi: Toán
8 trang 23 0 0