Danh mục

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 18 - Đề 14

Số trang: 8      Loại file: pdf      Dung lượng: 809.68 KB      Lượt xem: 6      Lượt tải: 0    
Jamona

Phí tải xuống: 1,000 VND Tải xuống file đầy đủ (8 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo đề thi - kiểm tra đề thi thử đại học khối a, a1, b, d toán 2013 - phần 18 - đề 14, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 18 - Đề 14 ĐỀ THI THỬ ĐẠI HỌC SỐ 1PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)Câu I (2 điểm) Cho hàm số y  f ( x)  8x 4  9x 2  1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình 8cos 4 x  9cos 2 x  m  0 với x  [0;  ] .Câu II (2 điểm) log 3 x 1 1. Giải phương trình:  x  2  x     x2  2  x  y  x 2  y 2  12  2. Giải hệ phương trình:   y x 2  y 2  12 Câu III (1 điểm) Tính diện tích của miền phẳng giới hạn bởi các đường y | x 2  4 x | và y  2 x .Câu IV (1 điểm) Cho hình chóp cụt tam giác đều ngoại tiếp một hình cầu bán kính r cho trước. Tính thểtích hình chóp cụt biết rằng cạnh đáy lớn gấp đôi cạnh đáy nhỏ.Câu V (1 điểm) Định m để phương trình sau có nghiệm       4sin3xsinx + 4cos  3x -  cos  x +   cos 2  2x +   m  0  4  4  4PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)1. Theo chương trình chuẩn.Câu VI.a (2 điểm) 1. Cho  ABC có đỉnh A(1;2), đường trung tuyến BM: 2 x  y  1  0 và phân giác trong CD: x  y  1  0 . Viết phương trình đường thẳng BC. 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số  x  2  t   y  2t  z  2  2t  .Gọi  là đường thẳng qua điểm A(4;0;-1) song song với (D) và I(-2;0;2) là hình chiếu vuônggóc của A trên (D). Trong các mặt phẳng qua  , hãy viết phương trình của mặt phẳng cókhoảng cách đến (D) là lớn nhất.Câu VII.a (1 điểm) Cho x, y, z là 3 số thực thuộc (0;1]. Chứng minh rằng 1 1 1 5    xy  1 yz  1 zx  1 x  y  z2. Theo chương trình nâng cao.Câu VI.b (2 điểm)1. Cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéonằm trên đường thẳng y = x. Tìm tọa độ đỉnh C và D.2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng  có phương  x  1  2t trình tham số  y  1  t .Một điểm M thay đổi trên đường thẳng  , xác định vị trí của điểm M để chu  z  2t vi tam giác MAB đạt giá trị nhỏ nhất.Câu VII.b (1 điểm) Cho a, b, c là ba cạnh tam giác. Chứng minh  1 1 2  b c a     2  3a  b 3a  c 2a  b  c  3a  c 3a  b ----------------------Hết---------------------- ĐÁP ÁN ĐỀ THI THỬ SỐ 1Câu Ý Nội dung Điểm I 2,00 1 1,00 + Tập xác định: D  ¡ 0,25 + Sự biến thiên:  Giới hạn: lim y  ; lim y   x  x   y  32x  18x = 2x 16x 2  9  3 x  0 0,25 y  0   x   3  4  Bảng biến thiên. 0,25  3 49 3 49 yCT  y      ; yCT  y     ; yC§  y  0   1  4 32 4 32  Đồ thị 0,25 2 1,00 ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: