Danh mục

Đề thi thử Đại học lần 1 năm 2013-2014 môn Toán - Trường THPT chuyên Lương Văn Chánh

Số trang: 6      Loại file: pdf      Dung lượng: 204.14 KB      Lượt xem: 1      Lượt tải: 0    
Thu Hiền

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi thử Đại học lần 1 năm 2013-2014 môn Toán - Trường THPT chuyên Lương Văn Chánh gồm có các câu hỏi tự luận được chia ra cho các thí sinh cụ thể như phần chung dành cho tất cả các thí sinh, phần riêng dành cho các bạn khối A, A1, B và các bạn khối D, D1, M có kèm đáp án.
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học lần 1 năm 2013-2014 môn Toán - Trường THPT chuyên Lương Văn ChánhTRƯỜNG THPT CHUYÊN ĐỀ THI THỬ ĐẠI HỌC LẦN 1 LƯƠNG VĂN CHÁNH NĂM HỌC 2013 – 2014 MÔN: TOÁN (Thời gian làm bài 180 phút ) ----------------------------------------------------------------------------------------------------- I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (2,0điểm). Cho hàm số y = x3 – 3x2 + (m – 2)x + 3m (Cm) (m là tham số). 1. Khảo sát và vẽ đồ thị hàm số ứng với m = 2. 2. Tìm m để tiếp tuyến có hệ số góc nhỏ nhất của đồ thị (Cm) của hàm số đã cho vuông góc với đường thẳng (d): x – y + 2 = 0 . Câu II (2,0 điểm)  (1  cos 2 x ) 1. Giải phương trình: 2 cos(  x ).  (1  cot x ) 4 sin x x  cos x 2. Tính:  dx sin 2 x  2 2 2 xy x  y  1  x  y Câu III (1,0 điểm) Giải hệ phương trình:   x  y  y  x2  Câu IV (1,0 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng 6 a ; điểm M là trung điểm của cạnh SA. Tính thể tích tứ diện SMBD. 2 Câu V (1,0 điểm) Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Chứng minh rằng: 1 1 1 3 3  3 3  1 1 a  b 1 b  c 1 c  a3 3 II. PHẦN RIÊNG (3,0 điểm). Câu VIa(3,0 điểm). DÀNH CHO THÍ SINH THI KHỐI: A, A1, B 1.a) Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: 2x + 2y – 1 = 0 ; d2: 4x – 2 y + 3 = 0. Gọi A là giao điểm của d1 và d2. Viết phương trình đường thẳng qua M (4;2) và lần lượt cắt d1, d2 tại B, C sao cho tam giác ABC cân tại A. 2.a) Một tổ học sinh có 4 em Nữ và 5 em Nam được xếp thành một hàng dọc. Tính xác suất để chỉ có hai em nữ A , B đứng cạnh nhau còn các em nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh A, B . 3.a) Tìm m để bất phương trình sau có nghiệm thuộc đoạn  0 ; 1  3    m 1  x 2  2 x  2  x( 2  x )  0 . Câu VIb(3điểm). DÀNH CHO THÍ SINH THI KHỐI: D, D1, M 1.b) Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 4x – 2y – 4 = 0. Viết phương trình đường thẳng qua M(1;4) và tiếp xúc với đường tròn (C). 2 1 2.b) Tìm hệ số của x trong khai triển Niu tơn đa thức f ( x)   x 2  x  1 ( x  2) 3n với n là số 10 4  3 n 2 tự nhiên thỏa mãn: An  C n  14n . log 22 x 3.b) Xác định m để bất phương trình:  m nghiệm đúng với mọi x thuộc tập xác định log 22 x 1 . Nguồnhttp://luongvanchanh.edu.vn/ ĐÁP ÁNCâu Nội dung Thang điểm I-PHẦN CHUNGCâu I(2đ) y = x3 – 3x2 + (m – 2)x + 3m1(1đ) Khi m = 2, ta được hàm: y = x3 – 3x2 + 6 - TXĐ: D = R - y’= 3x2 – 6x x  0  y  6 0,25 y’= 0   x  2  y  2 - lim  ; lim   x   x   - BBT: x  0 2  0,25 y’ + 0 - 0 + y 6  2  0,25 y’’= 6x – 6 , điểm uốn I(1,4); CĐ(0;6), CT(2;2). Điểm đặc biệt (-1;2), (3;6). 10 8 6 f x =   +6 x3-3x2 0,25 4 2 -5 ...

Tài liệu được xem nhiều: