Danh mục

Đề thi thử tuyển sinh Đại học năm 2014 môn Toán (khối A, A1) - Trường THPT chuyên Lý Tự Trọng

Số trang: 8      Loại file: pdf      Dung lượng: 830.20 KB      Lượt xem: 8      Lượt tải: 0    
Thư viện của tui

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đến với "Đề thi thử tuyển sinh Đại học năm 2014 môn Toán" của Trường THPT chuyên Lý Tự Trọng các bạn sẽ được tìm hiểu một số thông tin cơ bản để củng cố kiến thức phục vụ cho kì thi Đại học sắp tới. Đề thi gồm có hai phần thi là phần chung và phần riêng cùng với phần nâng cao với các câu hỏi tự luận có kèm đáp án và hướng dẫn giải chi tiết.
Nội dung trích xuất từ tài liệu:
Đề thi thử tuyển sinh Đại học năm 2014 môn Toán (khối A, A1) - Trường THPT chuyên Lý Tự Trọng SỞ GIÁO DỤC VÀ ĐÀO TẠO CẦN THƠ ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014TRƯỜNG THPT CHUYÊN LÝ TỰ TRỌNG Môn: TOÁN; Khối A và khối A1 Thời gian làm bài: 180 phút, không kể phát đề ĐỀ THI THỬPHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu 1 (2,0 điểm). Cho hàm số y = 2 x 3 - 3x 2 + 5 (1) a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). b) Gọi A, B là các điểm cực trị của đồ thị hàm số (1). Tìm tọa độ điểm M thuộc đường thẳng(d ) : x + 3 y + 7 = 0 sao cho = . + . + . đạt giá trị nhỏ nhất (O là gốc tọa độ).Câu 2 (1,0 điểm). Giải phương trình sin3 x - cos3 x + 3sin 2 x + 4sin x - cos x + 2 = 0 . Ï 1+ y Ô x(1 + x ) = 4 - y 2Câu 3 (1,0 điểm). Giải hệ phương trình Ì x yŒ . Ô( xy + 1)( x 2 y 2 + 1) = 4 y 3 Ó 2 4 x + x3 + x 2 + 2Câu 4 (1,0 điểm). Tính tích phân I Ú dx . 1 x 4 + 1Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng(ABCD) và góc giữa SC với mặt phẳng (SAB) bằng 300. Gọi M là điểm di động trên cạnh CD và H là hình chiếuvuông góc của S trên đường thẳng BM. Xác định vị trí M trên CD sao cho thể tích khối chóp S.ABH đạt giá trịlớn nhất, tính giá trị lớn nhất đó và tính khoảng cách từ C đến mặt phẳng (SBM).Câu 6 (1,0 điểm). Cho ba số thực dương a, b, c. Tìm giá trị lớn nhất của biểu thức: T ( abc a + b + c + a 2 + b 2 + c 2 ) (a 2 + b 2 + c 2 ) ( ab + bc + ca )PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)A. Theo chương trình ChuẩnCâu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho điểm A(4; - 7) và đường thẳngD : x - 2 y + 4 = 0 . Tìm điểm B trên D sao cho có đúng ba đường thẳng ( d i ) ( i Œ{1; 2; 3} ) thỏa mãn khoảngcách từ A đến các đường thẳng ( d i ) đều bằng 4 và khoảng cách từ B đến các đường thẳng ( d i ) đều bằng 6.Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz cho hình vuông ABCD với A(1; -1; -2) và các điểm x +1 y -1 z +1B, D nằm trên đường thẳng (d): = = . Tìm tọa độ các điểm B, C, D. 4 -1 1Câu 9.a (1,0 điểm). Có 40 tấm thẻ đánh số từ 1 đến 40. Chọn ngẫu nhiên ra 10 tấm. Tính xác suất để có 5 tấmthẻ mang số lẻ, năm tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ mang số chia hết cho 6.B. Theo chương trình Nâng caoCâu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho hình bình hành ABCD có A(4; 0), phương trìnhđường thẳng chứa trung tuyến kẻ từ B của tam giác ABC: 7 x + 4 y - 5 = 0 và phương trình đường trung trựccạnh BC: 2 x + 8 y - 5 = 0 . Tìm tọa độ các điểm B, C, D.Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz viết phương trình mặt phẳng (P) đi qua haiđiểm A(0; - 2; 1), B(10; 6; 2) và cách điểm C (-1; 3; - 2) một khoảng bằng 29 . 1 1Câu 9.b (1,0 điểm). Giải bất phương trình < . log3 2 x - 3x + 1 log3 ( x + 1) 2 ----------------- Hết ----------------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.Họ và tên thí sinh:……………………………………………………; Số báo danh:…………………… Cảm ơnbạn lovemathltt@yahoo.com.vnđãgửitớiwww.laisac.page.tl ĐÁP ÁN TOÁN A, A1 Câu Đáp án ĐiểmCâu 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y = 2 x3 - 3x 2 + 5(2,0 điểm) Èx 0 TXĐ: ; y = 6 x2 - 6 x ; y = 0 € 6 x2 - 6 x = 0 € Í ; y(0) = 5, y(1) = 0 0,25 Îx 1 Giới hạn: lim y = -• ; lim y = +• x Æ-• xÆ+• Hàm số nghịch biến trên khoảng ( 0; 1 ) 0,25 Hàm s ...

Tài liệu được xem nhiều: