Danh mục

GIẢI TÍCH MẠNG ĐIỆN_CHƯƠNG 6

Số trang: 14      Loại file: pdf      Dung lượng: 178.84 KB      Lượt xem: 18      Lượt tải: 0    
Hoai.2512

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu giải tích mạng điện_chương 6, khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
GIẢI TÍCH MẠNG ĐIỆN_CHƯƠNG 6 GIAÍI TÊCH MAÛNG CHÆÅNG 6 TRAÌO LÆU CÄNG SUÁÚT6.1. GIÅÏI THIÃÛU: Nhiãûm vuû cuía giaíi têch maûng laì tênh toaïn caïc thäng säú chãú âäü laìm viãûc, chuí yãúulaì doìng vaì aïp taûi moüi nuït cuía maûng âiãûn. Viãûc xaïc âënh caïc thäng säú chãú âäü maûng âiãûnráút coï yï nghéa khi thiãút kãú, váûn haình vaì âiãöu khiãøn hãû thäúng âiãûn. Mäüt säú låïn caïc thuáût toaïn âæåüc âãö xuáút trong 20 nàm tråí laûi âáy. Trong chæångnaìy ta giåïi thiãûu caïc phæång phaïp âoï trãn caïc khêa caûnh nhæ: Dãù chæång trçnh hoïa, täúcâäü giaíi, âäü chênh xaïc.... Viãûc tênh toaïn doìng cäng suáút phaíi âæåüc tiãún haình tæìng bæåïc vaì hiãûu chènh dáön.Bãn caûnh muûc âêch xaïc âënh traûng thaïi tènh thç viãûc tênh toaïn doìng cäng suáút coìn laì mäütpháön cuía caïc chæång trçnh vãö täúi æu vaì äøn âënh. Træåïc khi coï sæû xuáút hiãûn cuía maïy tênhsäú, viãûc tênh toaïn doìng cäng suáút âæåüc tiãún haình bàòng thiãút bë phán têch maûng. Tæì nàm1956, khi xuáút hiãûn maïy tênh säú âáöu tiãn thç phæång phaïp tênh doìng cäng suáút æïng duûngmaïy tênh säú âæåüc âãö xuáút vaì dáön dáön âæåüc thay thãú caïc thiãút bë phán têch maûng. Ngaìynay caïc thiãút bë phán têch maûng khäng coìn âæåüc duìng næîa.6.2. THIÃÚT LÁÛP CÄNG THÆÏC GIAÍI TÊCH. Giaí sæí maûng truyãön taíi laì maûng 3 pha âäúi xæïng vaì âæåüc biãøu diãùn bàòng maûng näúitiãúp dæång nhæ trãn hçnh 6.1a. Caïc pháön tæí cuía maûng âæåüc liãn kãút våïi nhau nãn ma tráûntäøng dáùn nuït YNuït coï thãø xaïc âënh tæì så âäö. Theo så âäö 6.1a ta coï: INuït = YNuït .VNuït (6.1) P 1 Ip p + . Vp Sp . - 0 (b) (a) Hçnh 6.1 : Så âäö âa cäøng cuía âæåìng dáy truyãön taíi YNuït laì mäüt ma tráûn thæa vaì âäúi xæïng. Taûi caïc cäøng cuía maûng coï caïc nguäön cängsuáút hay âiãûn aïp. Chênh caïc nguäön naìy taûi caïc cäøng laìm cho aïp vaì doìng liãn hãû phituyãún våïi nhau theo (6.1) chuïng ta coï thãø xaïc âënh âæåüc cäng suáút taïc duûng vaì phaínkhaïng båm vaìo maûng (quy æåïc cäng suáút dæång khi coï chiãöu båm vaìo maûng) dæåïi daûnghaìm phi tuyãún cuía Vp vaì Ip. Ta coï thãø hçnh dung nguäön cäng suáút båm vaìo maûng näúingang qua cäøng taûi âáöu dæång cuía nguäön båm nhæ hçnh 6.1b. Phán loaûi caïc nuït: Trang 77 GIAÍI TÊCH MAÛNG - Nuït P -Q laì nuït maì cäng suáút taïc duûng P vaì cäng suáút phaín khaïng Q laì cäú âënh,nhæ nuït P åí 6.1 chàóng haûn V p I p = S p + jQ p = ( PGP − PLP ) + j (QGP − Q LP ) SP SP SP SP SP SP (6.2)Våïi Vp = ep +jfp Chè säú GP vaì LP æïng våïi cäng suáút nguäön phaït vaì cäng suáút tiãu thuû åí P. S cho biãútcäng suáút cäú âënh (hay aïp âàût). - Nuït P -V tæång tæû laì nuït coï cäng suáút taïc duûng P cäú âënh vaì âäü låïn âiãûn aïp âæåücgiæî khäng âäøi bàòng caïch phaït cäng suáút phaín khaïng. Våïi nuït naìy ta coï: Re[V p I * ] = PpSP = PGP − PLPP SP S (6.3) p SP V p = (e 2 + f p2 ) = V p (6.4) p - Nuït V-θ (nuït hãû thäúng) roî raìng åí nuït naìy âiãûn aïp vaì goïc pha laì khäng âäøi. Viãûcâæa ra khaïi niãûm nuït hãû thäúng laì cáön thiãút vç täøn tháút I2R trong hãû thäúng laì khäng xaïcâënh træåïc âæåüc nãn khäng thãø cäú âënh cäng suáút taïc duûng åí táút caí caïc nuït. Nhçn chungnuït hãû thäúng coï nguäön cäng suáút låïn nháút. Do âoï ngæåìi ta âæa ra nuït âiãöu khiãøn âiãûn aïpnoïi chung laì noï coï cäng suáút phaït låïn nháút. ÅÍ nuït naìy cäng suáút taïc duûng PS (s kyï hiãûunuït hãû thäúng) laì khäng cäú âënh vaì âæåüc tênh toaïn cuäúi cuìng. Vç chuïng ta cuîng cáön mäütpha laìm chuáøn trong hãû thäúng, goïc pha cuía nuït hãû thäúng âæåüc choün laìm chuáøn thæåìng åímæïc zero radian. Âiãûn aïp phæïc V cäú âënh coìn Ps ...

Tài liệu được xem nhiều: