Danh mục

Giáo trình Toán học phần 1

Số trang: 16      Loại file: pdf      Dung lượng: 262.50 KB      Lượt xem: 15      Lượt tải: 0    
Thư viện của tui

Hỗ trợ phí lưu trữ khi tải xuống: 12,000 VND Tải xuống file đầy đủ (16 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Giáo trình n y đ−ợc biên soạn nhằm trang bị các tri thức toán học cốt yếu để l m công cụ học tập v nghiên cứu các môn học chuyên ng nh cho sinh viên các ng nh kỹ thuật thuộc Đại học Đ nẵng.
Nội dung trích xuất từ tài liệu:
Giáo trình Toán học phần 1 Bïi TuÊn Khang• H m BiÕn Phøc• Ph−¬ng Tr×nh VËt Lý - To¸n§¹i häc § n½ng 2004 Lêi nãi ®ÇuGi¸o tr×nh n y ®−îc biªn so¹n nh»m trang bÞ c¸c tri thøc to¸n häc cèt yÕu ®Ó l m c«ngcô häc tËp v nghiªn cøu c¸c m«n häc chuyªn ng nh cho sinh viªn c¸c ng nh kü thuËtthuéc §¹i häc § n½ng. Néi dung gi¸o tr×nh gåm cã 8 ch−¬ng víi thêi l−îng 60 tiÕt (4®¬n vÞ häc tr×nh) ®−îc chia l m hai chuyªn ®Ò nhá.Chuyªn ®Ò H m biÕn phøc gåm 5 ch−¬ng Ch−¬ng 1 C¸c kh¸i niÖm c¬ b¶n vÒ sè phøc, d y trÞ phøc, h m trÞ phøc v c¸c tËp con cña tËp sè phøc. Ch−¬ng 2 C¸c kh¸i niÖm c¬ b¶n vÒ h m trÞ phøc, ®¹o h m phøc, c¸c h m gi¶i tÝch s¬ cÊp v phÐp biÕn h×nh b¶o gi¸c. Ch−¬ng 3 C¸c kh¸i niÖm c¬ b¶n vÒ tÝch ph©n phøc, ®Þnh lý tÝch ph©n Cauchy v c¸c hÖ qu¶ cña nã. Ch−¬ng 4 C¸c kh¸i niÖm c¬ b¶n vÒ chuçi h m phøc, khai triÓn Taylor, khai triÓn Laurent, lý thuyÕt thÆng d− v c¸c øng dông cña nã. Ch−¬ng 5 C¸c kh¸i niÖm c¬ b¶n, c¸c tÝnh chÊt, c¸c ph−¬ng ph¸p t×m ¶nh - gèc v c¸c øng dông cña biÕn ®æi Fourier v biÕn ®æi Laplace.Chuyªn ®Ò Ph−¬ng tr×nh vËt lý To¸n gåm cã 3 ch−¬ng Ch−¬ng 6 C¸c kh¸i niÖm c¬ b¶n vÒ lý thuyÕt tr−êng : Tr−êng v« h−íng, tr−êng vect¬, th«ng l−îng, ho n l−u v to¸n tö vi ph©n cÊp 1. Ch−¬ng 7 C¸c b i to¸n c¬ b¶n cña ph−¬ng tr×nh vËt lý - to¸n, b i to¸n Cauchy v b i to¸n hçn hîp cña ph−¬ng tr×nh truyÒn sãng. Ch−¬ng 8 B i to¸n Cauchy v b i to¸n hçn hîp cña ph−¬ng tr×nh truyÒn nhiÖt, b i to¸n Dirichlet v b i to¸n Neumann cña ph−¬ng tr×nh Laplace.T¸c gi¶ xin ch©n th nh c¶m ¬n c¸c b¹n ®ång nghiÖp GVC. NguyÔn Trinh, GVC. Lª PhóNghÜa v GVC. TS. Lª Ho ng TrÝ ® d nh thêi gian ®äc b¶n th¶o v cho c¸c ý kiÕn ®ãnggãp ®Ó ho n thiÖn gi¸o tr×nh.Gi¸o tr×nh ®−îc biªn so¹n lÇn ®Çu ch¾c cßn cã nhiÒu thiÕu sãt. RÊt mong nhËn ®−îc ýkiÕn ®ãng gãp cña b¹n ®äc gÇn xa. § n½ng 2004 T¸c gi¶Ch−¬ng 1 Sè phøc §1. Tr−êng sè phøc• KÝ hiÖu ∀ = 3 × 3 = { (x, y) : x, y ∈ 3 }. Trªn tËp ∀ ®Þnh nghÜa phÐp to¸n céng v phÐpto¸n nh©n nh− sau ∀ (x, y), (x’, y’) ∈ ∀ (x, y) + (x’, y’) = (x + x’, y + y’) (x, y) × (x’, y’) = (xx’ - yy’, xy’ + x’y) (1.1.1)VÝ dô (2, 1) + (-1, 1) = (1, 2) v (2, 1) × (-1, 1) = (-3, 1)§Þnh lý (∀, +, × ) l mét tr−êng sè.Chøng minhKiÓm tra trùc tiÕp c¸c c«ng thøc (1.1.1)PhÐp to¸n céng cã tÝnh giao ho¸n, tÝnh kÕt hîp, cã phÇn tö kh«ng l (0, 0) ∀ (x, y) ∈ ∀, (x, y) + (0, 0) = (x, y)Mäi phÇn tö cã phÇn tö ®èi l -(x, y) = (-x, -y) ∀ (x, y) ∈ ∀, (x, y) + (-x, -y) = (0, 0)PhÐp to¸n nh©n cã tÝnh giao ho¸n, tÝnh kÕt hîp, cã phÇn tö ®¬n vÞ l (1, 0) ∀ (x, y) ∈ ∀, (x, y) × (1, 0) = (x, y) −yMäi phÇn tö kh¸c kh«ng cã phÇn tö nghÞch ®¶o l (x, y)-1 = ( 2 x 2 , 2 ) x + y x + y2 −y x ∀ (x, y) ∈ ∀ - {(0, 0)}, (x, y) × ( ,2 ) = (1, 0) x + y x + y2 2 2Ngo i ra phÐp nh©n l ph©n phèi víi phÐp céng• Tr−êng (∀, +, × ) gäi l tr−êng sè phøc, mçi phÇn tö cña ∀ gäi l mét sè phøc.Theo ®Þnh nghÜa trªn mçi sè phøc l mét cÆp hai sè thùc víi c¸c phÐp to¸n thùc hiÖntheo c«ng thøc (1.1.1). Trªn tr−êng sè phøc phÐp trõ, phÐp chia v phÐp luü thõa ®ÞnhnghÜa nh− sau. ∀ (n, z, z’) ∈ ∠ × ∀ × ∀* víi ∀* = ∀ - { (0, 0) } z = z × (z’)-1 v z0 = 1, z1 = z v zn = zn-1 × z z - z’ = z + (- z’), (1.1.2) z• B»ng c¸ch ®ång nhÊt sè thùc x víi sè phøc (x, 0) Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 5Ch−¬ng 1. Sè Phøc x ≡ (x, 0), 1 ≡ (1, 0) v 0 ≡ (0, 0)tËp sè thùc trë th nh tËp con cña tËp sè phøc. PhÐp céng v phÐp nh©n c¸c sè phøc h¹nchÕ lªn tËp sè thùc trë th nh phÐp céng v phÐp nh©n c¸c sè thùc quen thuéc. x + x’ ≡ (x, 0) + (x’, 0) = (x + x’, 0) ≡ x + x’, ...Ngo i ra trong tËp sè phøc cßn cã c¸c sè kh«ng ph¶i l sè thùc. KÝ hiÖu i = (0, 1) gäi l®¬n vÞ ¶o. Ta cã i2 = (0, 1) × (0, 1) = (-1, 0) ≡ -1Suy ra ph−¬ng tr×nh x2 + 1 = 0 cã nghiÖm phøc l x = − 1 ∉ 3.Nh− vËy tr−êng sè thùc (3, +, ×) l mét tr−êng con thùc sù cña tr−êng sè phøc (∀, +, ×). §2. D¹ng ®¹i sè cña sè phøc• Víi mäi sè phøc z = (x, y) ph©n tÝch (x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1)§ång nhÊt ®¬n vÞ thùc (1, 0) ≡ 1 v ®¬n vÞ ¶o (0, 1) ≡ i, ta cã z = x + i ...

Tài liệu được xem nhiều: