HỆ MÃ RSA
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
HỆ MÃ RSA CHƯƠNG 1 – HỆ MÃ RSA 1. THUẬT TOÁN RSA: Thuật toán RSA được đưa ra bởi Rivest, Shamir và Adleman [41]. Cho p và q làhai số nguyên tố lớn, ngẫu nhiên và phân biệt. Mô đun n là tích của hai số nguyên tốnày: n=pq. Hàm phi Euler (Eulers totient function) của n được xác định bởi: ( ) ( )( ) Chọn một số ( ) sao cho ( ( )) Và tính d với ( ) Sử dụng thuật toán Euclidean mở rộng [19, 31]. Ở đây, e là số mũ công khai(public exponent) và d là số mũ bí mật (private exponent). Thông thường người tachọn số mũ công khai nhỏ, ví dụ . Mô đun n và số mũ công khai e được côngbố. Giá trị d, các số nguyên tố p và p được giữ bí mật. Mã hóa được thực hiện bằng cáchtính ( ) M là bản rõ (Plaintext) sao cho . Số C là bản mã (ciphertext) tươngứng với bản rõ M, được tính bằng cách sử dụng ( ) Tính đúng của thuật toán RSA được chứng minh bằng định lý Euler như sau: Chon và a là các số nguyên dương, nguyên tố cùng nhau (relatively prime). Khi đó ( ) ( ) Do ( ), nghĩa là ( ) với một số nguyên K, chúng ta cóthể viết lại: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Do ( ) . Ngoại lệ (exception) ( ) có thể được xử lý như sau.Theo định lý Carmichael ( ) ( ) Trong đó ( ) là hàm Carmichael có dạng đơn giản là n = pq, cụ thể ( )( ) ( ) ( ) Chú ý rằng ( ) luôn là ước thật sự (proper divisor) của ( ) khi n là tích củacác số nguyên tố chẵn, phân biệt; trong trường hợp này ( ) nhỏ hơn ( ). Xét mốiquan hệ giữa e và d ( ) nếu ( ( )) Thấy rằng n là tích của các số nguyên tố phân biệt với mọi M, do đó đối với ngoạilệ ( ) được đưa ra bên trên trong định lý Euler. Ví dụ, chúng ta xây dựng một hệ mã RSA đơn giản như sau. Chọn p = 11 và q =13, tính ( ) ( )( ) Chúng ta cũng có thể tính hàm Carmichael của n như sau: ( )( ) ( ) ( ) ( ) Số mũ công khai e được chọn sao cho ( ) và ( ( )) ( ) Ví dụ, e = 17 sẽ thỏa ràng buộc này. Số mũ bí mật d được tính bởi ( ( )) ( ) Sử dụng thuật toán Euclidean mở rộng hoặc một thuật toán bất kỳ khác để tínhnghịch đảo mô đun (modular inverse). Do đó, người dùng công bố số mũ công khai vàmô đun: (e, n) = (13, 143) và giữ bí mật: d = 113, p = 11, q = 13. Quy trình mã hóa/giảimã thông thường được thực hiện như sau:+ Bản rõ: M = 50Mã hóa: ( ) ( )+ Bản mã: C = 85Giải mã: ( ) ( ) 2. Trao đổi các thông điệp bí mật Thư mục khóa công khai chứa các cặp (e, n). Người dùng muốn gửi các thôngđiệp bí mật cho một người khác truy cập đến thư mục và thu được các tham số này. Vídụ thư mục được sắp thứ tự như sau: Cặp và tương ứng là mô đun và số mũ công khai của Alice. Như vậy, làmthế nào Alice gửi thông điệp bí mật M của cô ấy đến cho Bob ? Trong giao thức đơn giảncủa tác giả, Alice sẽ thực hiện các bước sau: 1) Alice xác định tên của Bob trong thư mục và lấy số mũ công khai cùng mô đun của anh ấy: ( ). 2) Alice tính: ( ). 3) Alice gửi C đến cho Bob trên mạng. 4) Bob nhận C. 5) Bob sử dụng số mũ bí mật của anh ấy và mô đun tính ( ) để thu được M. 3. Ký các tài liệu số Thuật toán RSA cung cấp một thủ tục để ký tài liệu số và xác minh (verifying)nếu chữ ký thật sự là xác thực (authentic). Ký một tài liệu số có phần khác với ký mộttài liệu giấy (sinh ra cùng một chữ ký). Chữ ký số không thể là một hằng, nó là một hàmof the digital document for which it was produced. Sau khi có được chữ ký (chỉ là mộtphần dữ liệu số) của một tài liệu số, nó được đính kèm vào tài liệu cho những ai có nhucầu xác minh tính xác thực của tài liệu và chữ ký. Ở đây, các tác giả chỉ minh họa tómtắt qui trình ký sử dụng hệ mã RSA. Giả sử ...
Tìm kiếm theo từ khóa liên quan:
Thuật toán RSA hệ mã RSA thuật toán Euclidean định lý Euler số nguyên dương tính nghịch đảo mô đunGợi ý tài liệu liên quan:
-
Đề kiểm tra kiến thức môn Toán lớp 9 năm 2020-2021 - Trường THPT chuyên KHTN (Vòng 1 - Đợt 2)
1 trang 82 0 0 -
Đề thi Olympic Toán Quốc tế lần thứ 65 năm 2024
24 trang 28 0 0 -
Bài giảng An toàn hệ thống thông tin: Chương 2b - Nguyễn Thị Hạnh
19 trang 27 0 0 -
Đề thi Olympic Tin học sinh viên lần thứ XXVII khối Cá nhân không chuyên (Năm 2018)
4 trang 26 0 0 -
Nghiên cứu mô hình mã hóa thông tin ứng dụng chữ ký điện tử trong quá trình gửi và nhận văn bản
4 trang 25 0 0 -
Giấu tin trên video sử dụng khóa công khai
7 trang 25 0 0 -
Bài giảng Nhập môn An toàn thông tin: Chương 3 - PGS. Nguyễn Linh Giang
46 trang 24 0 0 -
Đề thi học sinh giỏi THPT lớp 12 môn Toán năm 2011
2 trang 23 0 0 -
Đề thi học sinh giỏi Toán 12 - Sở GD&ĐT Nam Định
2 trang 21 0 0 -
tiểu luận: CHỮ KÝ SỐ VÀ ỨNG DỤNG TRONG GIAO DỊCH HÀNH CHÍNH ĐIỆN TỬ
23 trang 21 0 0 -
Bài giảng An toàn và bảo mật dữ liệu trong hệ thống thông tin: Chương 2 - ThS. Trương Tấn Khoa
34 trang 20 0 0 -
Đề thi học kì 1 môn Toán lớp 6 năm 2023-2024 có đáp án - Trường THCS Phù Đổng, Đại Lộc
14 trang 20 0 0 -
Bài giảng Toán rời rạc: Bài tập chia & đồng dư
21 trang 20 0 0 -
Chuyên đề Lũy thừa với số mũ tự nhiên - Toán lớp 6
29 trang 18 0 0 -
Số chính phương theo modul bậc tùy ý
11 trang 18 0 0 -
Đề thi học sinh giỏi môn Tin 12 - Sở GD&ĐT Long An
10 trang 18 0 0 -
Bài giảng Toán học: Chủ đề 7 - Phần nguyên trong số học
33 trang 18 0 0 -
Ứng dụng mã QR và chữ ký số trong phòng chống giả mạo văn bằng, chứng chỉ ở dạng bản in
7 trang 17 0 0 -
Chuyên đề Phép chia hết, phép chia có dư
27 trang 17 0 0 -
Đề thi học sinh giỏi cấp tỉnh Toán 12 - Kèm đáp án
36 trang 17 0 0