Danh mục

Một số dạng bài tập về số phức

Số trang: 12      Loại file: pdf      Dung lượng: 368.19 KB      Lượt xem: 16      Lượt tải: 0    
10.10.2023

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (12 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu tham khảo Một số dạng bài tập về số phức biên soạn bởi Nguyễn Trung Kiên dành cho các bạn học sinh quan tâm và đang ôn thi môn toán học
Nội dung trích xuất từ tài liệu:
Một số dạng bài tập về số phứcwww.laisac.page.tl M TS D N B IT P MỘ SỐDẠ GBÀ TẬ Ộ ẠN ÀẬ V S P Ứ VỀ SỐPH C HỨC NguyễnTrungKiên I) D N G IS C AS PH C D ng 1) Bài toán liên quan n bi n i s ph c Ví d 1) Tìm s nguyên x, y sao cho s ph c z=x+yi tho mãn z 3 = 18 + 26i Gi i:  x3 − 3 xy 2 = 18  ⇔ 18 ( 3x 2 y − y 3 ) = 26 ( x3 − 3xy 2 ) z 3 = 18 + 26i ⇔ ( x + yi ) = 18 + 26i ⇔  2 3 3 x y − y = 26 3  1 Gi i phương trình b ng cách t y=tx ta ư c t = ⇒ x = 3, y = 1 . V y z=3+i 3 Ví d 2) Cho hai s ph c z1; z2 tho mãn z1 = z2 ; z1 + z2 = 3 Tính z1 − z2 Gi i: a12 + b12 = a2 + b22 = 1 2  t z1 = a1 + b1i; z2 = a2 + b2i . T gi thi t ta có  ( a1 + a2 ) + ( b1 + b2 ) = 3 2 2  ⇒ 2 ( a1b1 + a2b2 ) = 1 ⇒ ( a1 − a2 ) + ( b1 − b2 ) = 1 ⇒ z1 − z2 = 1 2 2 D ng 2) Bài toán liên quan n nghi m ph c Ví d 1) Gi i phương trình sau: z − 8(1 − i ) z + 63 − 16i = 0 2 Gi i: Ta có ∆ = 16(1 − i ) 2 − (63 − 16i ) = −63 − 16i = (1 − 8i ) T 2 ó tìm ra 2 nghi m là z1 = 5 − 12i, z2 = 3 + 4i Ví d 2) Gi i phương trình sau: 2(1 + i ) z 2 − 4(2 − i ) z − 5 − 3i = 0 Gi i: Ta có ∆ ’ = 4(2 – i)2 + 2(1 + i)(5 + 3i) = 16. V y phương trình cho hai nghi m là: 2(2 − i ) + 4 4 − i (4 − i )(1 − i ) 3 5 = = =−i z1 = 2(1 + i ) 1+ i 2 22 2(2 − i ) − 4 − i (−i )(1 − i ) 11 = = =− − i z2 = 2(1 + i) 1+ i 2 22 Ví d 3) Gi i phương trình z − 9 z + 14 z − 5 = 0 3 2 Gi i: Ta có phương trình tương ương v i ( 2 z − 1) ( z 2 − 4 z + 5 ) = 0 . T ó ta suy ra 1 phương trình có 3 nghi m là z1 = ; z2 = 2 − i; z3 = 2 + i 2 Ví d 4) Gi i phương trình: 2 z − 5 z 2 + 3 z + 3 + (2 z + 1)i = 0 bi t phương trình có 3 nghi m th c 2 z 3 − 5 z 2 + 3z + 3 = 0 −1 ⇒z= Gi i: Vì phương trình có nghi m th c nên  tho mãn c 2 z + 1 = 0 2 hai phương trình c a h :Phương trình ã cho tương ương v i ( 2 z + 1) ( z 2 − 3z + 3 + i ) = 0 . Gi i phương trình ta tìm ư c z = − ; z = 2 − i; z = 1 + i 1 2 1Ví d 5) Gi i phương trình: z 3 + (1 − 2i ) z 2 + (1 − i) z − 2i = 0 bi t phương trình cónghi m thu n o:Gi i: Gi s nghi m thu n o c a phương trình là z=bi thay vào phương trình ta có( bi ) + (1 − 2i) ( bi ) + (1 − i)(bi) − 2i = 0 ⇔ (b − b2 ) + (−b3 + 2b 2 + b − 2)i = 0 3 2 b − b 2 = 0 ⇔ 3 ⇒ b = 1 ⇒ z = i là nghi m, t ó ta có phương trình tương  −b + 2b + b − 2 = 0 2  ương v i ( z − i ) ( z 2 + (1 − i ) z + 2 ) = 0 . Gi i pt này ta s tìm ư c các nghi mVí d 6) Tìm nghi m c a phương trình sau: z 2 = z .Gi i: Gi s phương trình có nghi m: z=a+bi thay vào ta có ( a + bi ) = a + bi 2 a 2 − b 2 = a 1 3 ⇔ Gi i h trên ta tìm ư c (a, b) = (0; 0), (1; 0),(− ; ± ) . V y phương 2ab = −b 2 2 1 3trình có 4 nghi m là z = 0; z = 1; z = − ± i 22D ng 3) Các bài toán liên quan n modun c a s ph c:Ví d 1) Tìm các s ph c z tho mãn ng th i các i u ki n sau: z + 1 − 2i = z − 2 + i và z − i = 5Gi i:  x + 1 + ( y − 2)i = x − 2 + (1 − y )i Gi s z=x+yi (x,y là s th c) .T gi thi t ta có   x + ( y − 1)i |= 5  ( x + 1) + ( y − 2) = ( x − 2) + (1 − y )  ...

Tài liệu được xem nhiều:

Tài liệu liên quan: