Một số dạng bài tập về số phức
Số trang: 12
Loại file: pdf
Dung lượng: 368.19 KB
Lượt xem: 16
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu tham khảo Một số dạng bài tập về số phức biên soạn bởi Nguyễn Trung Kiên dành cho các bạn học sinh quan tâm và đang ôn thi môn toán học
Nội dung trích xuất từ tài liệu:
Một số dạng bài tập về số phứcwww.laisac.page.tl M TS D N B IT P MỘ SỐDẠ GBÀ TẬ Ộ ẠN ÀẬ V S P Ứ VỀ SỐPH C HỨC NguyễnTrungKiên I) D N G IS C AS PH C D ng 1) Bài toán liên quan n bi n i s ph c Ví d 1) Tìm s nguyên x, y sao cho s ph c z=x+yi tho mãn z 3 = 18 + 26i Gi i: x3 − 3 xy 2 = 18 ⇔ 18 ( 3x 2 y − y 3 ) = 26 ( x3 − 3xy 2 ) z 3 = 18 + 26i ⇔ ( x + yi ) = 18 + 26i ⇔ 2 3 3 x y − y = 26 3 1 Gi i phương trình b ng cách t y=tx ta ư c t = ⇒ x = 3, y = 1 . V y z=3+i 3 Ví d 2) Cho hai s ph c z1; z2 tho mãn z1 = z2 ; z1 + z2 = 3 Tính z1 − z2 Gi i: a12 + b12 = a2 + b22 = 1 2 t z1 = a1 + b1i; z2 = a2 + b2i . T gi thi t ta có ( a1 + a2 ) + ( b1 + b2 ) = 3 2 2 ⇒ 2 ( a1b1 + a2b2 ) = 1 ⇒ ( a1 − a2 ) + ( b1 − b2 ) = 1 ⇒ z1 − z2 = 1 2 2 D ng 2) Bài toán liên quan n nghi m ph c Ví d 1) Gi i phương trình sau: z − 8(1 − i ) z + 63 − 16i = 0 2 Gi i: Ta có ∆ = 16(1 − i ) 2 − (63 − 16i ) = −63 − 16i = (1 − 8i ) T 2 ó tìm ra 2 nghi m là z1 = 5 − 12i, z2 = 3 + 4i Ví d 2) Gi i phương trình sau: 2(1 + i ) z 2 − 4(2 − i ) z − 5 − 3i = 0 Gi i: Ta có ∆ ’ = 4(2 – i)2 + 2(1 + i)(5 + 3i) = 16. V y phương trình cho hai nghi m là: 2(2 − i ) + 4 4 − i (4 − i )(1 − i ) 3 5 = = =−i z1 = 2(1 + i ) 1+ i 2 22 2(2 − i ) − 4 − i (−i )(1 − i ) 11 = = =− − i z2 = 2(1 + i) 1+ i 2 22 Ví d 3) Gi i phương trình z − 9 z + 14 z − 5 = 0 3 2 Gi i: Ta có phương trình tương ương v i ( 2 z − 1) ( z 2 − 4 z + 5 ) = 0 . T ó ta suy ra 1 phương trình có 3 nghi m là z1 = ; z2 = 2 − i; z3 = 2 + i 2 Ví d 4) Gi i phương trình: 2 z − 5 z 2 + 3 z + 3 + (2 z + 1)i = 0 bi t phương trình có 3 nghi m th c 2 z 3 − 5 z 2 + 3z + 3 = 0 −1 ⇒z= Gi i: Vì phương trình có nghi m th c nên tho mãn c 2 z + 1 = 0 2 hai phương trình c a h :Phương trình ã cho tương ương v i ( 2 z + 1) ( z 2 − 3z + 3 + i ) = 0 . Gi i phương trình ta tìm ư c z = − ; z = 2 − i; z = 1 + i 1 2 1Ví d 5) Gi i phương trình: z 3 + (1 − 2i ) z 2 + (1 − i) z − 2i = 0 bi t phương trình cónghi m thu n o:Gi i: Gi s nghi m thu n o c a phương trình là z=bi thay vào phương trình ta có( bi ) + (1 − 2i) ( bi ) + (1 − i)(bi) − 2i = 0 ⇔ (b − b2 ) + (−b3 + 2b 2 + b − 2)i = 0 3 2 b − b 2 = 0 ⇔ 3 ⇒ b = 1 ⇒ z = i là nghi m, t ó ta có phương trình tương −b + 2b + b − 2 = 0 2 ương v i ( z − i ) ( z 2 + (1 − i ) z + 2 ) = 0 . Gi i pt này ta s tìm ư c các nghi mVí d 6) Tìm nghi m c a phương trình sau: z 2 = z .Gi i: Gi s phương trình có nghi m: z=a+bi thay vào ta có ( a + bi ) = a + bi 2 a 2 − b 2 = a 1 3 ⇔ Gi i h trên ta tìm ư c (a, b) = (0; 0), (1; 0),(− ; ± ) . V y phương 2ab = −b 2 2 1 3trình có 4 nghi m là z = 0; z = 1; z = − ± i 22D ng 3) Các bài toán liên quan n modun c a s ph c:Ví d 1) Tìm các s ph c z tho mãn ng th i các i u ki n sau: z + 1 − 2i = z − 2 + i và z − i = 5Gi i: x + 1 + ( y − 2)i = x − 2 + (1 − y )i Gi s z=x+yi (x,y là s th c) .T gi thi t ta có x + ( y − 1)i |= 5 ( x + 1) + ( y − 2) = ( x − 2) + (1 − y ) ...
Nội dung trích xuất từ tài liệu:
Một số dạng bài tập về số phứcwww.laisac.page.tl M TS D N B IT P MỘ SỐDẠ GBÀ TẬ Ộ ẠN ÀẬ V S P Ứ VỀ SỐPH C HỨC NguyễnTrungKiên I) D N G IS C AS PH C D ng 1) Bài toán liên quan n bi n i s ph c Ví d 1) Tìm s nguyên x, y sao cho s ph c z=x+yi tho mãn z 3 = 18 + 26i Gi i: x3 − 3 xy 2 = 18 ⇔ 18 ( 3x 2 y − y 3 ) = 26 ( x3 − 3xy 2 ) z 3 = 18 + 26i ⇔ ( x + yi ) = 18 + 26i ⇔ 2 3 3 x y − y = 26 3 1 Gi i phương trình b ng cách t y=tx ta ư c t = ⇒ x = 3, y = 1 . V y z=3+i 3 Ví d 2) Cho hai s ph c z1; z2 tho mãn z1 = z2 ; z1 + z2 = 3 Tính z1 − z2 Gi i: a12 + b12 = a2 + b22 = 1 2 t z1 = a1 + b1i; z2 = a2 + b2i . T gi thi t ta có ( a1 + a2 ) + ( b1 + b2 ) = 3 2 2 ⇒ 2 ( a1b1 + a2b2 ) = 1 ⇒ ( a1 − a2 ) + ( b1 − b2 ) = 1 ⇒ z1 − z2 = 1 2 2 D ng 2) Bài toán liên quan n nghi m ph c Ví d 1) Gi i phương trình sau: z − 8(1 − i ) z + 63 − 16i = 0 2 Gi i: Ta có ∆ = 16(1 − i ) 2 − (63 − 16i ) = −63 − 16i = (1 − 8i ) T 2 ó tìm ra 2 nghi m là z1 = 5 − 12i, z2 = 3 + 4i Ví d 2) Gi i phương trình sau: 2(1 + i ) z 2 − 4(2 − i ) z − 5 − 3i = 0 Gi i: Ta có ∆ ’ = 4(2 – i)2 + 2(1 + i)(5 + 3i) = 16. V y phương trình cho hai nghi m là: 2(2 − i ) + 4 4 − i (4 − i )(1 − i ) 3 5 = = =−i z1 = 2(1 + i ) 1+ i 2 22 2(2 − i ) − 4 − i (−i )(1 − i ) 11 = = =− − i z2 = 2(1 + i) 1+ i 2 22 Ví d 3) Gi i phương trình z − 9 z + 14 z − 5 = 0 3 2 Gi i: Ta có phương trình tương ương v i ( 2 z − 1) ( z 2 − 4 z + 5 ) = 0 . T ó ta suy ra 1 phương trình có 3 nghi m là z1 = ; z2 = 2 − i; z3 = 2 + i 2 Ví d 4) Gi i phương trình: 2 z − 5 z 2 + 3 z + 3 + (2 z + 1)i = 0 bi t phương trình có 3 nghi m th c 2 z 3 − 5 z 2 + 3z + 3 = 0 −1 ⇒z= Gi i: Vì phương trình có nghi m th c nên tho mãn c 2 z + 1 = 0 2 hai phương trình c a h :Phương trình ã cho tương ương v i ( 2 z + 1) ( z 2 − 3z + 3 + i ) = 0 . Gi i phương trình ta tìm ư c z = − ; z = 2 − i; z = 1 + i 1 2 1Ví d 5) Gi i phương trình: z 3 + (1 − 2i ) z 2 + (1 − i) z − 2i = 0 bi t phương trình cónghi m thu n o:Gi i: Gi s nghi m thu n o c a phương trình là z=bi thay vào phương trình ta có( bi ) + (1 − 2i) ( bi ) + (1 − i)(bi) − 2i = 0 ⇔ (b − b2 ) + (−b3 + 2b 2 + b − 2)i = 0 3 2 b − b 2 = 0 ⇔ 3 ⇒ b = 1 ⇒ z = i là nghi m, t ó ta có phương trình tương −b + 2b + b − 2 = 0 2 ương v i ( z − i ) ( z 2 + (1 − i ) z + 2 ) = 0 . Gi i pt này ta s tìm ư c các nghi mVí d 6) Tìm nghi m c a phương trình sau: z 2 = z .Gi i: Gi s phương trình có nghi m: z=a+bi thay vào ta có ( a + bi ) = a + bi 2 a 2 − b 2 = a 1 3 ⇔ Gi i h trên ta tìm ư c (a, b) = (0; 0), (1; 0),(− ; ± ) . V y phương 2ab = −b 2 2 1 3trình có 4 nghi m là z = 0; z = 1; z = − ± i 22D ng 3) Các bài toán liên quan n modun c a s ph c:Ví d 1) Tìm các s ph c z tho mãn ng th i các i u ki n sau: z + 1 − 2i = z − 2 + i và z − i = 5Gi i: x + 1 + ( y − 2)i = x − 2 + (1 − y )i Gi s z=x+yi (x,y là s th c) .T gi thi t ta có x + ( y − 1)i |= 5 ( x + 1) + ( y − 2) = ( x − 2) + (1 − y ) ...
Tìm kiếm theo từ khóa liên quan:
chuyên đề toán học số phức biến đổi số phức toán đại số ôn tập toánTài liệu liên quan:
-
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 231 0 0 -
Đề thi kết thúc học phần học kì 2 môn Đại số đại cương năm 2021-2022 có đáp án - Trường ĐH Đồng Tháp
2 trang 48 0 0 -
Bài giảng Đại số A1: Chương 0 - Lê Văn Luyện
24 trang 45 0 0 -
278 trang 39 0 0
-
Tài liệu luyện thi THPT Quốc gia môn Toán 12
379 trang 39 0 0 -
Đề thi chọn học sinh giỏi tỉnh Phú Yên
5 trang 38 0 0 -
Đề thi thử trường THCS-THPT Hồng Vân
6 trang 36 0 0 -
Lời giải đề thi học sinh giỏi quốc gia môn toán học
21 trang 36 0 0 -
Lý thuyết và bài tập Giải tích 12 - Chương 4: Số phức
45 trang 35 0 0 -
58 trang 34 0 0
-
Chương 4: Lý thuyết tập mờ & Logic mờ
17 trang 33 0 0 -
§7. CÁC TÍNH CHẤT CỦA DÃY SỐ HỘI TỤ
7 trang 32 0 0 -
17 trang 32 0 0
-
1 trang 32 0 0
-
Số phức trong các đề thi tốt nghiệp THPTQG và các đề thi thử
13 trang 31 0 0 -
Phân loại câu hỏi trong các đề thi THPTQG môn Toán
263 trang 31 0 0 -
13 trang 30 0 0
-
DÀN BÀI TÓM TẮT NỘI DUNG GIẢI TÍCH HÀM MỘT BIẾN
6 trang 30 0 0 -
Giáo trình toán học - Tập 3 P18
29 trang 30 0 0 -
Thể tích khối đa diện mặt tròn xoay
16 trang 29 0 0