Danh mục

Tuyển tập 55 đề ôn thi đại học năm 2011 môn Toán có đáp án - Đề số 9

Số trang: 6      Loại file: pdf      Dung lượng: 143.86 KB      Lượt xem: 10      Lượt tải: 0    
Thu Hiền

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu tuyển tập 55 đề ôn thi đại học năm 2011 môn toán có đáp án - đề số 9, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Tuyển tập 55 đề ôn thi đại học năm 2011 môn Toán có đáp án - Đề số 9 Đ ề số 9I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I (2 điểm) Cho hàm số y = x3 + (1 – 2m)x2 + (2 – m)x + m + 2 (m là tham số) (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2. 2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1.Câu II (2 điểm) 23 2 1) Giải phương trình: cos3x cos3 x  sin 3x sin 3 x  (1) 8  x 2  1  y ( y  x)  4 y 2) Giải hệ phương trình:  2 (x, y  ) (2)  ( x  1)( y  x  2)  y  6 dxCâu III (1 điểm) Tính tích phân: I   2x  1  4x  1 2Câu IV (1 điểm) Cho hình hộp đứng ABCD.A’B’C’D’ có các cạnh AB=AD = a, a3 và góc BAD = 600 . Gọi M và N lần lượt là trung điểm của các AA’ = 2 cạnh A’D’ và A’B’. Chứng minh rằng AC’ vuông góc với mặt phẳng (BDMN). Tính thể tích khối chóp A.BDMN.Câu V (1 điểm) Cho x,y là các số thực thỏa mãn điều kiện x2+xy+y2  3 .Chứng minh rằng: –4 3 – 3  x2 – xy – 3y2  4 3  3II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩnCâu VI.a (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A thuộc đường thẳng d: x – 4y –2 = 0, cạnh BC song song với d, phương trình đường cao BH: x + y + 3 = 0 và trung điểm của cạnh AC là M(1; 1). Tìm tọa độ các đỉnh A, B, C. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( ): 3x + 2y – z + 4 = 0 và hai điểm A(4;0;0) , B(0;4;0) .Gọi I là trung điểm của đoạn thẳng AB. Xác định tọa độ điểm K sao cho KI vuông góc với mặt phẳng (), đồng thời K cách đều gốc tọa độ O và (). ln(1  x)  ln(1  y)  x  y (a)Câu VII.a (1 điểm) Giải hệ phương trình:  2 2  x  12xy  20y  0 (b) B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy cho D A BC có cạnh AC đi qua điểm Biết AB = 2AM, phương trình đường phân giác trong AD: x – M(0;– 1). y = 0, phương trình đường cao CH: 2x + y + 3 = 0. Tìm tọa độ các đỉnh của D A BC . 2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): 4x – 3y + 11z = y3 z 1 x  4 z3 x y 0 và hai đường thẳng d1: . Chứng = = , = = 1 2 3 1 1 2 minh rằng d1 và d2 chéo nhau. Viết phương trình đường thẳng  nằm trên (P), đồng thời  cắt cả d1 và d2.Câu VII.b (1 điểm) Giải phương trình: 4 x – 2 x1  2(2 x – 1)sin(2 x  y – 1)  2  0 . Hướng dẫn Đề sô 9Câu I: 2) YCBT  phương trình y = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn: x1 < x 2 < 1   4 m 2  m  5  0 5 7    31Câu III: Đặt t = 4 x  1 . I  ln  2 12 2 3 3 31 1 .a 3 . a 3  3aCâu IV: VA.BDMN = VS.ABD = . SA.SABD = 4 43 4 4 16Câu V: Đặt A = x 2  xy  y 2 , B= x 2  xy  3 y 2  Nếu y = 0 thì B = 0B3 x2 x 2  xy  3 y 2 t2  t  3 x  Nếu y  0 thì đặt t = ta được B = A.  A. 2 2 2 x  xy  y t  t 1 y t2  t  3 (m–1)t2 + (m+1)t + m + 3 = 0 (1) Xét phương trình: m t2  t 1 (1) có nghiệm  m = 1 hoặc  = (m+1)2 – 4(m–1)(m+3)  0 3  4 3 3  4 3  m 3 3 Vì 0  A  3 nên –3– 4 3 B  –3+ 4 3Câu VI.a: 1) A   2 ;  2  , C  8 ; 8  , B(– 4;1)     3 3 3 3 x2 y2 z 2) I(2;2;0). Phương trình ...

Tài liệu được xem nhiều: