Thông tin tài liệu:
Tài liệu ôn thi đại học môn toán tham khảo về Phương trình đối xứng theo sinx, cosx báo tuổi trẻ online. Tài liệu hay và bổ ích dành cho học sinh hệ trung học phổ thông ôn thi tốt nghiệp và ôn thi đại học - cao đẳng tham khảo ôn tập củng cố kiến thức.
Nội dung trích xuất từ tài liệu:
Chương V: Phương trình đối xứng theo sinx, cosx CHÖÔNGV PHÖÔNG TRÌNH ÑOÁI XÖÙNG THEO SINX, COSXa ( sin x + cos x ) + b sin x cos x = c (1)Caù c h giaû iÑaët t = sin x + cos x vôùi ñieàu kieän t ≤ 2 ⎛ π⎞ ⎛ π⎞Thì t = 2 sin ⎜ x + ⎟ = 2 cos ⎜ x − ⎟ ⎝ 4⎠ ⎝ 4⎠Ta coù : t 2 = 1 + 2 sin x cos x neân (1) thaønh b 2at + 2 ( ) t −1 = c⇔ bt 2 + 2at − b − 2c = 0Giaû i (2) tìm ñöôïc t, roà i so vôù i ñieà u kieä n t ≤ 2 ⎛ π⎞giaû i phöông trình 2 sin ⎜ x + ⎟ = t ta tìm ñöôï c x ⎝ 4⎠Baø i 106 : Giaû i phöông trình sin x + sin2 x + cos3 x = 0 ( *) ((*) ⇔ sin x (1 + sin x ) + cos x 1 − sin2 x = 0 )⇔ (1 + sin x ) = 0 hay sin x + cos x (1 − sin x ) = 0 ⎡sin x = −1 (1 )⇔⎢ ⎢sin x + cos x − sin x cos x = 0 ( 2 ) ⎣ π• (1) ⇔ x = − + k2π ( k ∈ Z ) 2 ⎛ π⎞•Xeùt ( 2 ) : ñaët t = sin x + cos x = 2 cos ⎜ x − ⎟ ⎝ 4⎠ ñieàu kieän t ≤ 2 thì t 2 = 1 + 2 sin x cos x t2 − 1Vaä y (2) thaø n h t − =0 2⇔ t 2 − 2t − 1 = 0 ⎡t = 1 − 2⇔⎢ ⎢ t = 1 + 2 ( loaïi ) ⎣ ⎛ π⎞Do ñoù ( 2 ) ⇔ 2 cos ⎜ x − ⎟ = 1 − 2 ⎝ 4⎠ ⎛ π⎞ 2 ⇔ cos ⎜ x − ⎟ = − 1 = cos ϕ vôùi 0 < ϕ < 2π ⎝ 4⎠ 2 π 2 ⇔ x− = ±ϕ + h2π, h ∈ , vôùi cos ϕ = −1 4 2 π 2 ⇔ x = ± ϕ + h2π, h ∈ , vôùi cos ϕ = −1 4 2 3Baø i 107 : Giaû i phöông trình −1 + sin 3 x + cos3 x = sin 2x ( *) 2 3 ( *) ⇔ −1 + ( sin x + cos x )(1 − sin x cos x ) = sin 2x 2 ⎛ π⎞ Ñaët t = sin x + cos x = 2 sin ⎜ x + ⎟ ⎝ 4⎠ Vôù i ñieà u kieä n t ≤ 2 Thì t2 = 1 + 2sin x cos x ⎛ t2 − 1 ⎞ 3 2 Vaä y (*) thaø n h : −1 + t ⎜ 1 − ⎜ 2 ⎟ 2 ⎟= ( t −1 ) ⎝ ⎠ ( ) ( ⇔ −2 + t 3 − t 2 = 3 t 2 − 1 ) ⇔ t 3 + 3t 2 − 3t − 1 = 0 ( ) ⇔ ( t − 1) t 2 + 4t + 1 = 0 ⇔ t = 1 ∨ t = −2 + 3 ∨ t = −2 − 3 ( loaïi ) ⎛ π⎞ 1 π vôùi t = 1 thì sin ⎜ x + ⎟ = = sin ⎝ 4⎠ 2 4 π π π 3π ⇔ x + = = k2π ∨ x + = + k2π, k ∈ 4 4 4 4 π ⇔ x = k2π ∨ x = + k2π , k ∈ 2 ⎛ π⎞ 3−2 vôù i t = 3 − 2 thì sin ⎜ x + ⎟ = = sin ϕ ⎝ 4⎠ 2 π π 3−2 ⇔ x+ = ϕ + m2π ∨ x + = π − ϕ + m2π, m ∈ , vôùi = sin ϕ 4 4 2 π 3π 3−2 ⇔ x =ϕ− + m2π ∨ x = − ϕ + m2π, m ∈ , vôùi = sin ϕ 4 4 2Baø i 108 :Giaû i phöông trình 2 ( sin x + cos x ) = tgx + cot gx ( *) ⎧sin x ≠ 0 Ñieà u kieä n ⎨ ⇔ sin 2x ≠ 0 ⎩cos x ≠ 0 sin x cos x Luù c ñoù (*) ⇔ 2 ( sin x + cos x ) = + cos x sin x sin2 x + cos2 x 1 ⇔ 2 ( sin x + cos x ) = = sin x cos x sin x cos x ⎛ π⎞ Ñaët t = sin x + cos x = 2 sin ⎜ x + ⎟ ⎝ 4⎠ Thì t 2 = 1 + 2 sin x cos x vôùi t ≤ 2 vaø t 2 ≠ 1 2 (*) thaøn h 2t = 2 t −1 3 ⇔ 2t − 2t − 2 = 0 (Hie ...