Danh mục

Đáp án đề thi tuyển sinh đại học môn Toán (năm 2012): Khối B

Số trang: 4      Loại file: pdf      Dung lượng: 250.26 KB      Lượt xem: 12      Lượt tải: 0    
Hoai.2512

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (4 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Xin giới thiệu tới các bạn học sinh, sinh viên "Đáp án đề thi tuyển sinh đại học môn Toán (năm 2012): Khối B" của Bộ giáo dục và đào tạo. Đáp án và thang điểm gồm có 4. Mời các bạn cùng tìm hiểu và tham khảo nội dung thông tin tài liệu.
Nội dung trích xuất từ tài liệu:
Đáp án đề thi tuyển sinh đại học môn Toán (năm 2012): Khối B BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN – THANG ĐIỂM ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 ĐỀ CHÍNH THỨC Môn: TOÁN; Khối B (Đáp án - thang điểm gồm 04 trang) Câu Đáp án Điểm 1 a) (1,0 điểm)(2,0 điểm) Khi m = 1, ta có: y = x3 − 3x 2 + 3 . • Tập xác định: D = . 0,25 • Sự biến thiên: − Chiều biến thiên: y = 3 x 2 − 6 x; y = 0 ⇔ x = 0 hoặc x = 2. Các khoảng đồng biến: (− ∞; 0) và (2; + ∞) , khoảng nghịch biến: (0; 2). − Cực trị: Hàm số đạt cực đại tại x = 0, yCĐ = 3; đạt cực tiểu tại x = 2, yCT = −1. 0,25 − Giới hạn: lim y = −∞ và lim y = + ∞. x→−∞ x→+ ∞ − Bảng biến thiên: x −∞ 0 2 +∞ y + 0 – 0 + 3 +∞ 0,25 y −∞ –1 • Đồ thị: y 3 0,25 2 O x −1 b) (1,0 điểm) y = 3 x 2 − 6mx; y = 0 ⇔ x = 0 hoặc x = 2m. 0,25 Đồ thị hàm số có 2 điểm cực trị khi và chỉ khi m ≠ 0 (*). Các điểm cực trị của đồ thị là A(0; 3m3 ) và B (2m; − m3 ). 0,25 Suy ra OA = 3 | m3 | và d ( B, (OA)) = 2 | m | . S ∆OAB = 48 ⇔ 3m4 = 48 0,25 ⇔ m = ± 2, thỏa mãn (*). 0,25 Trang 1/4 2 Phương trình đã cho tương đương với: cos 2 x + 3 sin 2 x = cos x − 3 sin x 0,25(1,0 điểm) ( π ⇔ cos 2 x − = cos x + 3 π 3 ) ( ) 0,25 π π ( ) ⇔ 2 x − = ± x + + k 2π (k ∈]). 3 3 0,25 2π 2π ⇔ x= + k 2π hoặc x = k (k ∈]). 0,25 3 3 3 Điều kiện: 0 ≤ x ≤ 2 − 3 hoặc x ≥ 2 + 3 (*).(1,0 điểm) Nhận xét: x = 0 là nghiệm của bất phương trình đã cho. 0,25 1 1 Với x > 0, bất phương trình đã cho tương đương với: x+ + x + − 4 ≥ 3 (1). x x ⎡3 − t < 0 1 Đặt t = x + (2), bất phương trình (1) trở thành t − 6 ≥ 3 − t ⇔ ⎢⎢⎧3 − t ≥ 0 2 0,25 ⎢⎣⎩⎨t 2 − 6 ≥ (3 − t ) 2 x ...

Tài liệu được xem nhiều: