Danh mục

Đề thi chọn học sinh giỏi tỉnh năm học 2010-2011 môn Toán 12 - Sở Giáo dục và Đào tạo Thanh Hóa

Số trang: 5      Loại file: pdf      Dung lượng: 255.96 KB      Lượt xem: 14      Lượt tải: 0    
10.10.2023

Phí tải xuống: 2,000 VND Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Nhằm giúp các bạn học sinh củng cố lại phần kiến thức đã học, biết cấu trúc ra đề thi như thế nào và xem bản thân mình mất bao nhiêu thời gian để hoàn thành đề thi, mời các bạn cùng tham khảo "Đề thi chọn học sinh giỏi tỉnh năm học 2010-2011 môn Toán 12 - Sở Giáo dục và Đào tạo Thanh Hóa" dưới đây để có thêm tài liệu tham khảo trong quá trình ôn thi.
Nội dung trích xuất từ tài liệu:
Đề thi chọn học sinh giỏi tỉnh năm học 2010-2011 môn Toán 12 - Sở Giáo dục và Đào tạo Thanh Hóa SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI TỈNH THANH HOÁ Năm học 2010- 2011 Đề chính thức Môn thi: Toán Lớp: 12 THPT Số báo danh Thời gian: 180 phút (không kể thời gian giao đề) Ngày thi: 24/03/2011 (Đề thi có 01 trang, gồm 05 câu).Câu I. (4,0 điểm). Cho hàm số y = x3 − (m + 1) x2 − (4 − m2 ) x −1 − 2m ( m là tham số thực), có đồ thị là (Cm ). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số với m = −1. 2) Tìm các giá trị của m để đồ thị (Cm ) có hai tiếp tuyến vuông góc với nhau.Câu II. (6,0 điểm). 1) Giải phương trình: cos 2 x + cos3 x − sin x − cos 4 x = sin 6 x. 2) Giải bất phương trình: 6( x 2 − 3x + 1) + x 4 + x 2 + 1 ≤ 0 ( x ∈ ). 3) Tìm số thực a để phương trình: 9 x + 9 = a3x cos(π x) , chỉ có duy nhất một nghiệm thực π 2 sin x.Câu III. (2,0 điểm). Tính tích phân: I = ∫ dx. ( ) 3 0 sin x + 3 cos xCâu IV. (6,0 điểm). 1) Cho tứ diện đều ABCD có độ dài cạnh bằng 1. Gọi M, N lần lượt là hai điểm thuộc các cạnh AB, AC sao cho mặt phẳng (DMN) vuông góc với mặt phẳng (ABC). Đặt AM = x, AN = y . Tìm x, y để diện tích toàn phần của tứ diện DAMN nhỏ nhất. 2) Trên mặt phẳng toạ độ Oxy , cho đường thẳng Δ : x − y + 5 = 0 và hai elíp x2 y 2 x2 y 2 ( E1 ) : + = 1 , ( E2 ) : 2 + 2 = 1 ( a > b > 0) có cùng tiêu điểm. Biết rằng ( E2 ) 25 16 a b đi qua điểm M thuộc đường thẳng Δ. Tìm toạ độ điểm M sao cho elíp ( E2 ) có độ dài trục lớn nhỏ nhất. 3) Trong không gian Oxyz , cho điểm M (0; 2;0) và hai đường thẳng ⎧ x = 1 + 2t ⎧ x = 3 + 2s ⎪ ⎪ Δ1 : ⎨ y = 2 − 2t (t ∈ ); Δ 2 : ⎨ y = −1 − 2 s ( s ∈ ) . ⎪ z = −1 + t , ⎪ z = s, ⎩ ⎩ Viết phương trình mặt phẳng (P) đi qua M song song với trục O x , sao cho (P) cắt hai đường thẳng Δ1 , Δ 2 lần lượt tại A, B thoả mãn AB = 1 .Câu V. (2,0 điểm). Cho các số thực a, b, c thoả mãn: ⎧a 2 + b2 + c 2 = 6 ⎨ ⎩ ab + bc + ca = −3. Tìm giá trị lớn nhất của biểu thức P = a 6 + b6 + c 6 . .............................................................. HẾT ........................................................ Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.SỞ GD & ĐT THANH HOÁ KỲ THI CHỌN HỌC SINH GIỎI TỈNH HƯỚNG DẪN CHẤM NĂM HỌC 2010 - 2011 ĐỀ CHÍNH THỨC MÔN THI: TOÁN LỚP: 12 THPT (Gồm có 4 trang) Ngày thi: 24 - 3 - 2011 Câu Ý Hướng dẫn chấm ĐiêmCâu I 1) Với m = −1, ta được hàm số y = x 3 − 3x + 1. 4,0 đ 2,0đ Tập xác định: . 0,5 Giới hạn tại vô cực: lim y = +∞, lim y = −∞. x →+∞ x →−∞ Sự biến thiên: y = 3 x − 3 = 0 ⇔ x = ±1. 2 y > 0 ⇔ x ∈ (−∞; −1) ∪ (1; +∞ ). Hàm số đồng biến trên các khoảng (−∞ − 1) và (1; +∞) . 0,5 y < 0 ⇔ x ∈ (−1;1). Hàm số nghịch biến trên khoảng (−1;1). Điểm cực đại của đồ thị (−1;3), điểm cực tiểu của đồ thị (1; −1). Bảng biến thiên: x −∞ +∞ −1 1 y + 0 − 0 + 0,5 3 +∞ y −∞ −1 Đồ thị đi qua điểm (-2; -1) và (2; 3). y Điểm uốn I(0; 1) là tâm đối xứng 3 1 0,5 -2 -1 1 2 ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: