Hàm số-ôn thi cấp tốc đại học 2009
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Hàm số-ôn thi cấp tốc đại học 2009Nguy n Phú Khánh –Nguy n T t Thu các em thu n ti n trong vi c ôn luy n thi i h c và Cao ng năm 2009 . Chúng tôi g i t ng các em bàivi t nh mang tính t ng quát gi i tích hàm s l p 12 , cũng như m t s ng d ng c áo gi i quy t khátri t nh ng d ng toán t ng c p các l p h c dư i mà các em còn b ngõ . Tài li u ư c c p nhi u ch chuyên phù h p vi c ôn luy n thi c p t c chu n b kỳ thi i h c tháng 7/2009 .Trong quá trình biên so n ch c h n còn nhi u ch thi u sót khách quan, chúng tôi r t mong óng góp quýbáu c a các b n c gi g n xa , thư góp ý g i v email: phukhanh1009@gmail.com . Tài li u này còn ư clưu tr t i hai website : http://www.mathsvn.violet.vn và http://www.maths.vn .Nguy n Phú Khánh –Nguy n T t Thu Bài 1: TÍNH ƠN I U C A HÀM S 1.1 TÓM T T LÝ THUY T1. nh nghĩa :Gi s K là m t kho ng , m t o n ho c m t n a kho ng . Hàm s f xác nh trên K ư c g i là• ( ) ( ) ng bi n trên K n u v i m i x 1, x 2 ∈ K , x 1 < x 2 ⇒ f x 1 < f x 2 ;• Ngh ch bi n trên K n u v i m i x 1, x 2 ∈ K , x 1 < x 2 ⇒ f (x ) > f (x ) . 1 22. i u ki n c n hàm s ơn i u :Gi s hàm s f có o hàm trên kho ng I• N u hàm s f ( ) ng bi n trên kho ng I thì f x ≥ 0 v i m i x ∈ I .• N u hàm s f ngh ch bi n trên kho ng I thì f ( x ) ≤ 0 v i m i x ∈I .3. i u ki n hàm s ơn i u : nh lý 1 : nh lý v giá tr trung bình c a phép vi phân ( nh lý Lagrange): ( )N u hàm s f liên t c trên a;b và có o hàm trên kho ng a;b thì t n t i ít nh t m t i m c ∈ a;b sao ( ) () () ( )(cho f b − f a = f c b − a . ) nh lý 2 :Gi s I là m t kho ng ho c n a kho ng ho c m t o n , f là hàm s liên t c trên I và có o hàm t i m i i m trong c a I ( t c là i m thu c I nhưng không ph i u mút c a I ) .Khi ó : ( )• N u f x > 0 v i m i x ∈ I thì hàm s f ng bi n trên kho ng I ;• N u f (x ) < 0 v i m i x ∈ I thì hàm s f ngh ch bi n trên kho ng I ;• N u f (x ) = 0 v i m i x ∈ I thì hàm s f không i trên kho ng I .Chú ý :• N u hàm s f liên t c trên a;b và có ( ) ( ) o hàm f x > 0 trên kho ng a;b thì hàm s f ng bi n trêna;b . • N u hàm s f liên t c trên a;b và có ( ) ( ) o hàm f x < 0 trên kho ng a;b thì hàm s f ngh ch bi ntrên a;b . • Ta có th m r ng nh lí trên như sau :Gi s hàm s f có o hàm trên kho ng I . N u f (x ) ≥ 0 v i ∀x ∈ I( ho c f (x ) ≤ 0 v i ∀x ∈ I ) và f (x ) = 0 t i m t s h u h n i m c a I thì hàm s f ng bi n (ho cngh ch bi n) trên I .Nguy n Phú Khánh –Nguy n T t Thu 1.2 D NG TOÁN THƯ NG G P.D ng 1 : Xét chi u bi n thiên c a hàm s . ( )Xét chi u bi n thiên c a hàm s y = f x ta th c hi n các bư c sau:• Tìm t p xác nh D c a hàm s .• Tính o hàm y = f x . ( )• Tìm các giá tr c a x thu c D ( ) ( ) f x = 0 ho c f x không xác nh( ta g i ó là i m t i h n hàm s ). ( )• Xét d u y = f x trên t ng kho ng x thu c D .• D a vào b ng xét d u và i u ki n suy ra kho ng ơn i u c a hàm s .Ví d 1 :Xét chi u bi n thiên c a các hàm s sau:1. y = − x 3 − 3x 2 + 24x + 262. y = x 3 − 3x 2 + 23. y = x 3 + 3x 2 + 3x + 2 Gi i:1. y = − x − 3x + 24x + 26 . 3 2Hàm s ã cho xác nh trên » .Ta có : y = −3x 2 − 6x + 24 x = −4y = 0 ⇔ −3x 2 − 6x + 24 = 0 ⇔ x = 2 B ng xét d u c a y x −∞ −4 2 +∞y − 0 + 0 − ( )y > 0, x ∈ −4;2 ⇒ y ng bi n trên kho ng ( −4;2 ) ,y > 0, x ∈ ( −∞; −4 ) , ( 2; +∞ ) ⇒ y ngh ch bi n trên các kho ng ( −∞; −4 ) , ( 2; +∞ ) .Ho c ta có th trình bày :Hàm s ã cho xác nh trên » .Ta có : y = −3x 2 − 6x + 24 ...
Tìm kiếm theo từ khóa liên quan:
toán 12 luyện thi tốt nghiệp ôn thi đại học giải nhanh toán toán chuyên đề thi toánGợi ý tài liệu liên quan:
-
Kiểm tra định kì học kì II năm học 2014–2015 môn Toán lớp 4 - Trường TH Thái Sanh Hạnh
3 trang 107 0 0 -
Đề thi và đáp án môn: Toán cao cấp A1
3 trang 59 0 0 -
800 Câu hỏi trắc nghiệm Vật lý luyện thi Đại học hay và khó
97 trang 50 0 0 -
CHỨNH MINH BA ĐIỂM THẲNG HÀNG NHỜ SỬ DỤNG ĐỊNH LÝ THALES
4 trang 41 0 0 -
Đề thi thử THPT Quốc gia 2015 lần 1 môn Toán
5 trang 38 0 0 -
Đề thi thử THPT Quốc gia môn Toán năm học 2015-2016
1 trang 37 0 0 -
150 CÂU HỎI VÀ BÀI TẬP ÔN THI ĐH-CĐ
12 trang 37 0 0 -
6 trang 36 0 0
-
Đề thi thử THPT Quốc gia năm 2016 môn Toán - Trường THPT Thực hành
1 trang 33 0 0 -
Đề thi thử THPT Quốc gia lần 3 môn Toán năm 2015-2016 - Trường THPT Phước Bình
2 trang 32 0 0 -
Đề thi thử THPT Quốc gia lần 2 môn Toán - Trường THPT Nguyễn Hữu Cảnh
2 trang 31 0 0 -
Phương trình và bất phương trình chứa dấu giá trị tuyệt đối
4 trang 31 0 0 -
Đề thi cuối học kỳ 1 năm học 2015-2016 môn Toán ứng dụng - Đại học Sư phạm Kỹ thuật TP. Hồ Chí Minh
2 trang 31 0 0 -
CÂU HỎI TRẮC NGHIỆM PHẦN THÍ NGHIỆM THỰC HÀNH HOÁ HỌC LỚP 12
2 trang 31 0 0 -
Gợi ý giải đề thi tuyển sinh Đại học năm 2010 môn Toán khối A
5 trang 30 0 0 -
5 trang 30 0 0
-
131 trang 30 0 0
-
Tóm tắt lý thuyết hóa vô cơ lớp 12
9 trang 30 0 0 -
Đề thi Olympic Toán sinh viên Trường Đại học Bách Khoa Hà Nội- Môn GIẢI TÍCH
1 trang 28 0 0 -
Đề thi thử THPT Quốc gia lần 4 môn Toán năm 2015-2016 - Trường THPT Phước Bình
2 trang 28 0 0