Luận văn Thạc sĩ Toán học: Tính duy nhất của hàm phân hình P-adic
Số trang: 64
Loại file: pdf
Dung lượng: 569.22 KB
Lượt xem: 12
Lượt tải: 0
Xem trước 7 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Luận văn Thạc sĩ Toán học: Tính duy nhất của hàm phân hình P-adic được thực hiện nhằm ứng dụng hai định lý cơ bản của lý thuyết Nevanlinna P-adic để chứng minh các định lý về tính duy nhất của hàm phân hình P-adic; đồng thời giới thiệu một số đa thức và các tập duy nhất của hàm phân hình P-adic.
Nội dung trích xuất từ tài liệu:
Luận văn Thạc sĩ Toán học: Tính duy nhất của hàm phân hình P-adic BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Thị Mỹ Dung TÍNH DUY NHẤT CỦA HÀM PHÂN HÌNH P-ADIC Chuyên ngành : Đại số và lý thuyết số Mã số : 60 46 05 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TS. MỴ VINH QUANG Thành phố Hồ Chí Minh – 2008 LỜI CẢM ƠN Lời đầu tiên trong luận văn này tôi xin gửi đến PGS.TS Mỵ Vinh Quang – người thầy đã tận tình hướng dẫn và giúp đỡ tôi trong suốt quá trình học tập và làm luận văn lòng biết ơn chân thành và sâu sắc nhất. Xin chân thành cảm ơn các thầy: Trần Huyên, Bùi Tường Trí, Bùi Xuân Hải, Lê Hoàn Hóa, Đậu Thế Cấp cùng với tất cả các thầy cô khác đã trực tiếp tham gia giảng dạy , truyền đạt kiến thức cho tôi trong suốt quá trình học tập. Cuối cùng tôi xin cảm ơn các anh chị ở phòng Khoa học công nghệ và sau Đại học, các đồng nghiệp, bạn bè đã động viên và tạo điều kiện thuận lợi cho tôi học tập trong suốt thời gian qua và hoàn thành luận văn này. TP.Hồ Chí Minh 10 - 2008 Nguyễn Thị Mỹ Dung MỞ ĐẦU 1. Lý do chọn đề tài Lý thuyết Nevanlinna p-adic lần đầu tiên được xây dựng bởi Hà Huy Khoái, Mỵ Vinh Quang và Boutabaa vào những thập kỷ cuối của thế kỷ trước ( xem [2], [5] ) và ngay sau đó lý thuyết Nevanlinna p-adic đã được mở rộng và tổng quát bởi nhiều tác giả khác cho trường hợp nhiều chiều và cho siêu mặt. Những năm gần đây có nhiều tác giả đã ứng dụng thành công lý thuyết Nevanlinna p-adic để nghiên cứu các hàm chỉnh hình, phân hình p-adic. Vì lý do đó, chúng tôi chọn đề tài: “ Tính duy nhất của hàm phân hình p-adic ” nhằm mục đích tiếp cận một chuyên ngành toán học mới đang phát triển. 2. Mục đích nghiên cứu Ứng dụng hai định lý cơ bản của lý thuyết Nevanlinna p-adic để chứng minh các định lý về tính duy nhất của hàm phân hình p-adic; đồng thời giới thiệu một số đa thức và các tập duy nhất của hàm phân hình p-adic. 3. Đối tượng và phạm vi nghiên cứu Chúng tôi sẽ nghiên cứu lý thuyết Nevanlinna p-adic và ứng dụng để nghiên cứu các hàm phân hình p-adic. 4. Ý nghĩa khoa học thực tiễn của đề tài Luận văn đã trình bày được nội dung của lý thuyết Nevanlinna p-adic, chứng minh được các định lý về tính duy nhất của hàm phân hình p-adic; đồng thời giới thiệu một số đa thức và các tập duy nhất của hàm phân hình p-adic. 5. Cấu trúc luận văn Nội dung của luận văn gồm 3 chương: Chương 1: Các trường số p-adic Trong chương này trình bày một số kiến thức để chuẩn bị cho các chương sau bao gồm: chuẩn trên trường, xây dựng trường số p-adic p , vành các số nguyên p-adic p , xây dựng trường các số phức p-adic p . Hầu hết các chứng minh trong chương này được bỏ qua, có thể tìm các chứng minh đó trong phần tài liệu tham khảo. Chương 2: Lý thuyết Nevanlinna p-adic Trong chương này trình bày một số các hàm đặc trưng và hai định lý cơ bản của Nevanlinna. Chương 3: Ứng dụng của lý thuyết Nevanlinna p-adic Trong chương này chúng tôi đưa ra ứng dụng của lý thuyết Nevanlinna để chứng minh các định lý về tính duy nhất của hàm phân hình p-adic; đồng thời giới thiệu một số đa thức và các miền duy nhất của hàm phân hình p-adic. Chương 1: CÁC TRƯỜNG SỐ P-ADIC Trong chương này chúng tôi trình bày một số kiến thức để chuẩn bị cho các chương sau bao gồm: chuẩn trên trường, xây dựng trường số p-adic p , vành các số nguyên p-adic p , xây dựng trường các số phức p-adic p . Hầu hết các chứng minh trong chương này được bỏ qua, có thể tìm các chứng minh đó trong phần tài liệu tham khảo. 1.1. Chuẩn trên trường 1.1.1. Định nghĩa chuẩn trên trường Cho F là một trường, ánh xạ :F được gọi là chuẩn (giá trị tuyệt đối) trên trường F nếu thỏa các điều kiện sau: i/ x F : x 0 và x 0 x 0 ii/ x, y F : xy x . y iii/ x, y F : x y x y Nếu trường F là trường , , thì hàm giá trị tuyệt đối thông thường là chuẩn trên F. Ngoài ra nếu F là một trường bất kỳ thì :F 1 neáu x 0 x x 0 neáu x= 0 là một chuẩn trên trường F, chuẩn này được gọi là chuẩn tầm thường. Dễ thấy chuẩn trên F có các tính chất cơ bản sau: i/ x F : x x ii/ 1 1 ( 1 là đơn vị của F) 1 1 iii/ x F , x 0 : x x Nhận xét Nếu F là trường hữu hạn thì F có chuẩn duy nhất là chuẩn tầm thường. Chứng minh: Giả sử F có q phần tử ( q , q ...
Nội dung trích xuất từ tài liệu:
Luận văn Thạc sĩ Toán học: Tính duy nhất của hàm phân hình P-adic BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Thị Mỹ Dung TÍNH DUY NHẤT CỦA HÀM PHÂN HÌNH P-ADIC Chuyên ngành : Đại số và lý thuyết số Mã số : 60 46 05 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TS. MỴ VINH QUANG Thành phố Hồ Chí Minh – 2008 LỜI CẢM ƠN Lời đầu tiên trong luận văn này tôi xin gửi đến PGS.TS Mỵ Vinh Quang – người thầy đã tận tình hướng dẫn và giúp đỡ tôi trong suốt quá trình học tập và làm luận văn lòng biết ơn chân thành và sâu sắc nhất. Xin chân thành cảm ơn các thầy: Trần Huyên, Bùi Tường Trí, Bùi Xuân Hải, Lê Hoàn Hóa, Đậu Thế Cấp cùng với tất cả các thầy cô khác đã trực tiếp tham gia giảng dạy , truyền đạt kiến thức cho tôi trong suốt quá trình học tập. Cuối cùng tôi xin cảm ơn các anh chị ở phòng Khoa học công nghệ và sau Đại học, các đồng nghiệp, bạn bè đã động viên và tạo điều kiện thuận lợi cho tôi học tập trong suốt thời gian qua và hoàn thành luận văn này. TP.Hồ Chí Minh 10 - 2008 Nguyễn Thị Mỹ Dung MỞ ĐẦU 1. Lý do chọn đề tài Lý thuyết Nevanlinna p-adic lần đầu tiên được xây dựng bởi Hà Huy Khoái, Mỵ Vinh Quang và Boutabaa vào những thập kỷ cuối của thế kỷ trước ( xem [2], [5] ) và ngay sau đó lý thuyết Nevanlinna p-adic đã được mở rộng và tổng quát bởi nhiều tác giả khác cho trường hợp nhiều chiều và cho siêu mặt. Những năm gần đây có nhiều tác giả đã ứng dụng thành công lý thuyết Nevanlinna p-adic để nghiên cứu các hàm chỉnh hình, phân hình p-adic. Vì lý do đó, chúng tôi chọn đề tài: “ Tính duy nhất của hàm phân hình p-adic ” nhằm mục đích tiếp cận một chuyên ngành toán học mới đang phát triển. 2. Mục đích nghiên cứu Ứng dụng hai định lý cơ bản của lý thuyết Nevanlinna p-adic để chứng minh các định lý về tính duy nhất của hàm phân hình p-adic; đồng thời giới thiệu một số đa thức và các tập duy nhất của hàm phân hình p-adic. 3. Đối tượng và phạm vi nghiên cứu Chúng tôi sẽ nghiên cứu lý thuyết Nevanlinna p-adic và ứng dụng để nghiên cứu các hàm phân hình p-adic. 4. Ý nghĩa khoa học thực tiễn của đề tài Luận văn đã trình bày được nội dung của lý thuyết Nevanlinna p-adic, chứng minh được các định lý về tính duy nhất của hàm phân hình p-adic; đồng thời giới thiệu một số đa thức và các tập duy nhất của hàm phân hình p-adic. 5. Cấu trúc luận văn Nội dung của luận văn gồm 3 chương: Chương 1: Các trường số p-adic Trong chương này trình bày một số kiến thức để chuẩn bị cho các chương sau bao gồm: chuẩn trên trường, xây dựng trường số p-adic p , vành các số nguyên p-adic p , xây dựng trường các số phức p-adic p . Hầu hết các chứng minh trong chương này được bỏ qua, có thể tìm các chứng minh đó trong phần tài liệu tham khảo. Chương 2: Lý thuyết Nevanlinna p-adic Trong chương này trình bày một số các hàm đặc trưng và hai định lý cơ bản của Nevanlinna. Chương 3: Ứng dụng của lý thuyết Nevanlinna p-adic Trong chương này chúng tôi đưa ra ứng dụng của lý thuyết Nevanlinna để chứng minh các định lý về tính duy nhất của hàm phân hình p-adic; đồng thời giới thiệu một số đa thức và các miền duy nhất của hàm phân hình p-adic. Chương 1: CÁC TRƯỜNG SỐ P-ADIC Trong chương này chúng tôi trình bày một số kiến thức để chuẩn bị cho các chương sau bao gồm: chuẩn trên trường, xây dựng trường số p-adic p , vành các số nguyên p-adic p , xây dựng trường các số phức p-adic p . Hầu hết các chứng minh trong chương này được bỏ qua, có thể tìm các chứng minh đó trong phần tài liệu tham khảo. 1.1. Chuẩn trên trường 1.1.1. Định nghĩa chuẩn trên trường Cho F là một trường, ánh xạ :F được gọi là chuẩn (giá trị tuyệt đối) trên trường F nếu thỏa các điều kiện sau: i/ x F : x 0 và x 0 x 0 ii/ x, y F : xy x . y iii/ x, y F : x y x y Nếu trường F là trường , , thì hàm giá trị tuyệt đối thông thường là chuẩn trên F. Ngoài ra nếu F là một trường bất kỳ thì :F 1 neáu x 0 x x 0 neáu x= 0 là một chuẩn trên trường F, chuẩn này được gọi là chuẩn tầm thường. Dễ thấy chuẩn trên F có các tính chất cơ bản sau: i/ x F : x x ii/ 1 1 ( 1 là đơn vị của F) 1 1 iii/ x F , x 0 : x x Nhận xét Nếu F là trường hữu hạn thì F có chuẩn duy nhất là chuẩn tầm thường. Chứng minh: Giả sử F có q phần tử ( q , q ...
Tìm kiếm theo từ khóa liên quan:
Luận văn Thạc sĩ Toán học Hàm phân hình P-adic Duy nhất nghiệm của hàm phân hình P-adic Lý thuyết Nevanlinna P-adic Định lý về tính duy nhất nghiệm Ứng dụng lý thuyết Nevanlinna P-adicGợi ý tài liệu liên quan:
-
Luận văn Thạc sĩ Toán học: Số Bernoulli và ứng dụng
63 trang 147 0 0 -
39 trang 51 0 0
-
Luận văn Thạc sĩ Toán học: Đa thức nội suy Lagrange, đa thức Chebyshev và ứng dụng
85 trang 43 0 0 -
Luận văn Thạc sĩ Toán học: Một số ứng dụng của công thức nội suy Lagrange và Hermite
64 trang 38 0 0 -
57 trang 36 0 0
-
56 trang 27 0 0
-
Luận văn Thạc sĩ Khoa học: Một số vấn đề về phần xoắn của đường cong elliptic
59 trang 25 0 0 -
Luận văn thạc sĩ toán học: Xấp xỉ tuyến tính cho 1 vài phương trình sóng phi tuyến
45 trang 25 0 0 -
Luận văn Thạc sĩ Toán học: Các phương pháp tính tích phân và ứng dụng
101 trang 25 0 0 -
Luận văn Thạc sĩ Toán học: Nghiệm siêu hữu hiệu của bài toán tối ưu và bài toán cân bằng vectơ
41 trang 23 0 0