Danh mục

Một số vấn đề về bất đẳng thức đại số

Số trang: 23      Loại file: pdf      Dung lượng: 254.57 KB      Lượt xem: 10      Lượt tải: 0    
Jamona

Phí tải xuống: 14,000 VND Tải xuống file đầy đủ (23 trang) 0
Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu một số vấn đề về bất đẳng thức đại số, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Một số vấn đề về bất đẳng thức đại số www.VNMATH.comA. Một số vấn đề về bất đẳng thức đại số:Bất đẳng thức là một trong những vấn đề lí thú nhất trong giải tóan phổ thông. Trong mụcnày chúng ta sẽ ôn lại một số bất đẳng thức cổ điển và tiếp cận một số phương phápchứng minh bất đẳng thức. Do khối lượng kiến thức là tương đối lớn nên một số kháiniệm,tính chất cơ bản đều được bỏ qua. Các bạn có thể tìm thây những tính chất này nàySách Giáo Khoa của Bộ Giáo Dục và Đào Tạo.Dưói đây là các nộ i dung trong chuyên đề này.a)Bất đẳng thức Cauchy i)Bất đẳng thức Cauchy có lẽ là đã quen thuộc với nhiều bạn . Ngay từ năm lớp8,các bạn đã bắt gặp các bất đẳng thức như: x+ y ≥ xy 2 x+ y+ z 3 ≥ xyz 3 x+ y+ z+t 4 ≥ xyzt 4 Trong đó x, y , z , t là các số thực không âm Những bất đẳng thức có dạng này được gọ i là bất đẳng thức Cauchy. Bất đẳngthức Cauchy tổng quát có dạng như sau: Cho x1 , x2 ,..., xn là các số thực không âm. Khi đó ta có bất đẳng thức sau: x1 + x2 + ... + xn n ≥ x1 x2 ...xn n Dấu bằng xảy ra khi và chỉ khi x1 = x2 = ... = xn x + x + ... + xn Đại lượng 1 2 được gọi là trung bình cộng của các số x1 , x2 ,..., xn . n Đại lượng n x1 x 2 ...xn được gọi là trung bình nhân của các số x1 , x2 ,..., xn . Do đó bất đẳng thức Cauchy còn có tên gọi khác là bất đẳng thức TBC-TBN (bấtđẳng thức giữa đại lượng trung bình cộng và đại lượng trung bình nhân). Bất đẳng thức Cauchy có nhá nhiều cách chứng minh. Tuy nhiên do khuôn khổquyển sách nên ở đây,tác giả chỉ nêu ra cách chứng minh điển hình nhất. Phương phápchứng minh này cũng đa gắn liền với một tên gọi: “Quy nạp Cauchy”. Các bạn có thểtham khảo thêm về phương pháp này trong phần phương pháp Quy Nạp. Ta sẽ chứng minh bất đẳng thức cần chứng minh đúng khi n = 2k Trước hết ta chứng minh cho trường hợp cơ sở , k = 1. Ta cần chứng minh x + y ≥ 2 xy ⇔ ( x − y ) 2 = 0. Bất đẳng thức tương đương là đúng do đó bất đẳng thức ban đầu cũng đúng.Giải sử bất đẳng thức đã đúng cho k = m , tức là www.VNMATH.comx1 + x2 + ... + x2m ≥ 2m x1 x2 ...x2m 2m Ta sẽ chứng minh bất đẳng thức cũng đúng cho k = m + 1. x1 x2 + x3 x4 + ... + x2m+1 −1 x2m+1 x1 + x2 + ... + x2m+1 ≥ ≥ 2m+1 x1 x2 ...x2m+1 Ta có: m +1 m 2 2 (Ở trên ta đã sử dụng bất đẳng thức Cauchy cho từng cặp số x2 k +1 + x2 k + 2 ≥ 2 x2 k +1 x2 k + 2 , ∀k = 1, 2 m − 1 sau đó sử dụng bất đẳng thức Cauchy cho 2m số x1 x2 , x3 x4 ,..., x2m+1 −1 x2m+1 . Như vậy bất đẳng thức Cauchy đã đúng cho vô số số hạng. Bây giờ ta sẽ chứng minh nếu n = m + 1 đúng thì bất đẳng thức cũng đúng cho n = m. Thực vậy,áp dụng bất đẳng thức Cauchy cho m + 1 số x1 , x2 ,..., xm , m x1 x2 ...xm ta có: x1 + x2 + ... + xm + m x1 x2 ...xm ≥ (m + 1)m +1 x1 x2 ...xm m x1 x2 ...xm ⇔ x1 + x2 + ... + xm + m x1 x2 ...xm ≥ (m + 1) m x1 x2 ...xm . ⇔ x1 + x2 + ... + xm ≥ m m x1 x2 ...xm x1 + x2 + ... + xm m ⇔ ≥ x1 x 2 ...xm . m Như vậy theo nguyên lý Quy nạp Cauchy ta có điều cần chứng minh. Nhận xét rằng bất đẳng thức cơ sở chỉ xảy ra dấu bằng khi và chỉ khi x = y do đó trong bất đẳng thức tổng quát của ta sâu bằng cũng chỉ xảy ra khi và chỉ khi x1 = x2 = ... = xn . Ta có nhiều cách nhìn nhận về bất đẳng thức Cauchy, ví dụ như cho các số thựcdương có tổng không thay đổ i thì giá trị lớn nhất của tích các số này là gì, hoặc ngượclại ,tức là tìm giá trị nhỏ nhất của các số thực dương có tích không đổi. Cũng cần lưu ý với các bạn rằng trong bất dẳng thức Cauchy,điều kiện các sốthực không âm là quan trọng, ví dụ với n = 2k + 1 , ta có thể chỉ ra ví dụ với các số thựcgồm 2k số −1 và một số 2k thì bất đẳng thức không còn đúng nữa. ii)Bất đẳng thức Cauchy mở rộng Trong phần này ta hãy xem xét bất đẳng thức Cauchy có trong số.Ta hãy khởi đầubằng bất đẳng thức cho hai số thực dương trước. Cho các số nguyên dương a,b,c,d và hai số thực dương x,y. Khi đó: a c x+ y b d ≥ ad +bc x ad y bc ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: