Danh mục

Cẩm nang cho mùa thi: Tuyển chọn 50 bài toán giải bất phương trình - Nguyễn Hữu Biển

Số trang: 21      Loại file: pdf      Dung lượng: 603.79 KB      Lượt xem: 8      Lượt tải: 0    
Thu Hiền

Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Nhằm giúp các bạn đang học và ôn thi Đại học, Cao đẳng có thêm tài liệu ôn thi môn Toán, mời các bạn cùng tham khảo nội dung cẩm nang cho mùa thi "Tuyển chọn 50 bài toán giải bất phương trình" dưới đây. Nội dung cẩm nang gồm 50 bài toán có hướng dẫn lời giải về bất phương trình, hy vọng nội dung tài liệu sẽ giúp các bạn tự tin hơn trong kỳ thi sắp tới.
Nội dung trích xuất từ tài liệu:
Cẩm nang cho mùa thi: Tuyển chọn 50 bài toán giải bất phương trình - Nguyễn Hữu Biển CẨM NANG CHO MÙA THI TUYỂN CHỌN 50 BÀI TOÁNGIẢI BẤT PHƯƠNG TRÌNH (ÔN THI THPT QUỐC GIA) NGUYỄN HỮU BIỂN https://www.facebook.com/groups/nguyenhuu bienEmail: ng.huubien@gmail.comTUYỂN CHỌN 50 BÀI TOÁN GIẢI BẤT PHƯƠNG TRÌNH - ÔN THI THPT QUỐC GIA Bài 1: Giải bất phương trình x + 1 − x 2 ≥ 2 − 3x − 4 x 2 .Hướng dẫn x ≥ 0 0 ≤ x ≤ 1  2  −3 + 41- Điều kiện: 1 − x ≥ 0 ⇔  −3 − 41 −3 + 41 ⇔ 0 ≤ x ≤ .  2  ≤x≤ 8 2 − 3x − 4 x ≥ 0  8 8- Bất phương trình đã cho tương đương với x + 1 − x 2 + 2 x(1 − x 2 ) ≥ 2 − 3 x − 4 x 2 ⇔ 3( x 2 + x) − (1 − x) + 2 ( x + x 2 )(1 − x) ≥ 0  −5 + 34 2 2 x +x 1 2  x≥ x +x x +x 9 ⇔3 +2 −1 ≥ 0 ⇔ ≥ ⇔ 9 x 2 + 10 x − 1 ≥ 0 ⇔  1− x 1− x 1− x 3  −5 − 34 x ≤ .  9 −5 + 34 −3 + 41- Kết hợp điều kiện (*), ta suy ra nghiệm của bất phương trình là ≤x≤ . 9 8 Bài 2: Giải bất phương trình x − 1 + 2 3x − 2 + 9 x 2 − 24 x 2 + 10 x − 1 ≥ 0, ( x ∈ R)Hướng dẫn: Điều kiện: x ≥ 1- Bất phương trình đã cho tương đương với x − 1 − 1 + 2 3 x − 2 − 4 + 9 x 2 − 24 x 2 + 10 x + 4 ≥ 0 ⇔ ( x − 1 − 1) + 2( 3 x − 2 − 2)( x − 2)(9 x 2 − 6 x − 2) ≥ 0 x−2 2(3 x − 6) ⇔ + [ ] + ( x − 2) (3 x − 1) 2 − 3 ≥ 0 x −1 + 1 3x − 2 + 2  1 6  ⇔ ( x − 2)  + + (3 x − 1) 2 − 3 ≥ 0(1)  x −1 + 1 3x − 2 + 2  1 6 2- Dễ thấy + + (3 x − 1) − 3 > (3.1 − 1) 2 − 3 = 1 > 0, ∀x ≥ 1 x −1 + 1 3x − 2 + 2- Hơn nữa (1) ⇔ x − 2 ≥ 0 ⇔ x ≥ 2. Kết hợp điều kiện thu được x ≥ 2. Bài 3: Giải bất phương trình sau: 1 + log 2 x + log 2 ( x + 2 ) > log 2 (6 − x)Hướng dẫn: ĐK: 0 < x < 6 . 2 2 ⇔ log 2 2 x 2 + 4 x > log 2 ( 6 − x ) ⇔ 2 x 2 + 4 x > ( 6 − x ) ⇔ x 2 + 16 x − 36 > 0 ( )Vậy: x < −18 hay 2 < xSo sánh với điều kiện. KL: Nghiệm BPT là 2 < x < 6 . 9 x 3 − 22 x 2 + 19 x + x − 1 − 7 Bài 4: Giải bất phương trình > 1, ( x ∈ R ) x3 + 2x 2 + 2x − 4 x ≥ 1Hướng dẫn: Điều kiện  3 2 x + 2x + 2x − 4 ≠ 0- Nhận xét x 3 + 2 x 2 + 2 x − 4 ≥ 1 + 2 + 2 − 4 = 1 > 0, ∀x ≥ 1 .- Bất phương trình đã cho tương đương với 9 x 3 − 22 x 2 + 19 x − x − 1 − 7 > x 3 + 2 x 2 + 2 x − 4 ⇔ x − 1 − 1 + 8 x 3 − 24 x 2 + 17 x − 2 > 0NGUYỄN HỮU BIỂN - https://www.facebook.com/groups/nguyenhuubien Trang 1TUYỂN CHỌN 50 BÀI TOÁN GIẢI BẤT PHƯƠNG TRÌNH - ÔN THI THPT QUỐC GIA x−2  1  ⇔ + ( x − 2)(8 x 2 − 8 x + 1) > 0 ⇔ ( x − 2)  + 2(2 x − 1) 2 − 1 > 0(1) x −1 + 1  x −1 + 1  1- Rõ ràng + 2(2 x − 1) 2 − 1 > 2(2 − 1) 2 − 1 = 1 > 0, ∀x ≥ 1 nên (1) ⇔ x − 2 > 0 ⇔ x > 2 x −1 + 1 Bài 5: Giải bất phương trình: log 5 ( 4 x + 1) − log 5 ( 7 − 2 x ) ≤ 1 + log 1 ( 3x + 2 ) 5 1 7Hướng dẫn: + Điều kiện: − < x < 4 2 ⇔ log 5 ( 4 x + 1) + log 5 ( 3x + 2 ) ≤ 1 + log 5 ( 7 − 2 x ) ⇔ log 5 ( 4 x + 1)( 3 x + 2 ) ≤ log 5 5 ( 7 − 2 x ) ⇔ ( 4 x + 1)( 3 x + 2 ) ≤ 5 ( 7 − 2 x ) ⇔ 12 x 2 + 21x − 33 ≤ 0 33 ⇔− ≤ x ≤1 12 1 1Giao với điều kiện, ta được: − < x ≤ 1 . Vậy: nghiệm của BPT đã cho là − < x ≤ 1 4 4 Bài 6: Giải bất phương trình ( x − 1) x 2 − 2 x + 5 ≥ 4 x x 2 + 1 + 2 x + 2( x ∈ R)Hướng dẫn: Điều kiện: x ∈ R. Khi đó : ⇔ ( x + 1)(2 + x 2 − 2 x + 5 ) + 2 x(2 x 2 + 1 − x 2 − 2 x + 5 ) ≤ 0 2 x(4 x 2 + 4 − x 2 + 2 x − 5) ⇔ ( x + 1)(2 + x 2 ...

Tài liệu được xem nhiều: