Develop computer programs for simplifying sums that involve binomial coefficients: The Art of Computer Programming, Volume 1: Fundamental Algorithms
Số trang: 222
Loại file: pdf
Dung lượng: 1.23 MB
Lượt xem: 5
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Science is what we understand well enough to explain to a computer. Art iseverything else we do. During the past several years an important part of mathematicshas been transformed from an Art to a Science: No longer do we need to get a brilliantinsight in order to evaluate sums of binomial coefficients, and many similar formulasthat arise frequently in practice; we can now follow a mechanical procedure anddiscover the answers quite systematically.
Nội dung trích xuất từ tài liệu:
Develop computer programs for simplifying sums that involve binomial coefficients: The Art of Computer Programming, Volume 1: Fundamental AlgorithmsThis page intentionally left blank[50] Develop computer programs for simplifying sumsthat involve binomial coefficients. Exercise 1.2.6.63 in The Art of Computer Programming, Volume 1: Fundamental Algorithms by Donald E. Knuth, Addison Wesley, Reading, Massachusetts, 1968. A=BMarko Petkovˇek s Herbert S. WilfUniversity of Ljubljana University of Pennsylvania Ljubljana, Slovenia Philadelphia, PA, USA Doron Zeilberger Temple University Philadelphia, PA, USA April 27, 1997iiContentsForeword viiA Quick Start . . . ixI Background 11 Proof Machines 3 1.1 Evolution of the province of human thought . . . . . . . . . . . . . . 3 1.2 Canonical and normal forms . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Polynomial identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Proofs by example? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Trigonometric identities . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Fibonacci identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.7 Symmetric function identities . . . . . . . . . . . . . . . . . . . . . . 12 1.8 Elliptic function identities . . . . . . . . . . . . . . . . . . . . . . . . 132 Tightening the Target 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Human and computer proofs; an example . . . . . . . . . . . . . . . . 24 2.4 A Mathematica session . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 A Maple session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Where we are and what happens next . . . . . . . . . . . . . . . . . . 30 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 The Hypergeometric Database 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Hypergeometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 How to identify a series as hypergeometric . . . . . . . . . . . . . . . 35 3.4 Software that identifies hypergeometric series . . . . . . . . . . . . . . 39iv CONTENTS 3.5 Some entries in the hypergeometric database . . . . . . . . . . . . . . 42 3.6 Using the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.7 Is there really a hypergeometric database? . . . . . . . . . . . . . . . 48 3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 II The Five Basic Algorithms 53 4 Sister Celine’s Method 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Sister Mary Celine Fasenmyer . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Sister Celine’s general algorithm . . . . . . . . . . . . . . . . . . . . . 58 4.4 The Fundamental Theorem . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 Multivariate and “q” generalizations . . . . . . . . . . . . . . . . . . 70 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Gosper’s Algorithm 73 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
Nội dung trích xuất từ tài liệu:
Develop computer programs for simplifying sums that involve binomial coefficients: The Art of Computer Programming, Volume 1: Fundamental AlgorithmsThis page intentionally left blank[50] Develop computer programs for simplifying sumsthat involve binomial coefficients. Exercise 1.2.6.63 in The Art of Computer Programming, Volume 1: Fundamental Algorithms by Donald E. Knuth, Addison Wesley, Reading, Massachusetts, 1968. A=BMarko Petkovˇek s Herbert S. WilfUniversity of Ljubljana University of Pennsylvania Ljubljana, Slovenia Philadelphia, PA, USA Doron Zeilberger Temple University Philadelphia, PA, USA April 27, 1997iiContentsForeword viiA Quick Start . . . ixI Background 11 Proof Machines 3 1.1 Evolution of the province of human thought . . . . . . . . . . . . . . 3 1.2 Canonical and normal forms . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Polynomial identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Proofs by example? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Trigonometric identities . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Fibonacci identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.7 Symmetric function identities . . . . . . . . . . . . . . . . . . . . . . 12 1.8 Elliptic function identities . . . . . . . . . . . . . . . . . . . . . . . . 132 Tightening the Target 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Human and computer proofs; an example . . . . . . . . . . . . . . . . 24 2.4 A Mathematica session . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 A Maple session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Where we are and what happens next . . . . . . . . . . . . . . . . . . 30 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 The Hypergeometric Database 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Hypergeometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 How to identify a series as hypergeometric . . . . . . . . . . . . . . . 35 3.4 Software that identifies hypergeometric series . . . . . . . . . . . . . . 39iv CONTENTS 3.5 Some entries in the hypergeometric database . . . . . . . . . . . . . . 42 3.6 Using the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.7 Is there really a hypergeometric database? . . . . . . . . . . . . . . . 48 3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 II The Five Basic Algorithms 53 4 Sister Celine’s Method 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Sister Mary Celine Fasenmyer . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Sister Celine’s general algorithm . . . . . . . . . . . . . . . . . . . . . 58 4.4 The Fundamental Theorem . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 Multivariate and “q” generalizations . . . . . . . . . . . . . . . . . . 70 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Gosper’s Algorithm 73 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
Tài liệu cùng danh mục:
-
Giáo trình Sử dụng thiết bị văn phòng - Trường CĐ Kinh tế - Kỹ thuật Bạc Liêu
79 trang 577 4 0 -
50 trang 478 0 0
-
73 trang 423 2 0
-
69 trang 397 6 0
-
Giáo trình Tin học (Trình độ: Trung cấp nghề) - Trường Trung cấp nghề Củ Chi
268 trang 319 4 0 -
183 trang 313 0 0
-
Giáo trình Tin học văn phòng: Phần 2 - Bùi Thế Tâm
65 trang 294 0 0 -
Nhập môn Tin học căn bản: Phần 1
106 trang 288 0 0 -
Ứng dụng công cụ Quizizz thiết kế trò chơi học tập trong giảng dạy học phần tin học đại cương
12 trang 284 0 0 -
Giáo trình Tin học văn phòng: Phần 2
17 trang 267 0 0
Tài liệu mới:
-
Sáng kiến kinh nghiệm Tiểu học: Một số trò chơi giúp nâng cao hiệu quả dạy học môn Tiếng Anh lớp 1
28 trang 0 0 0 -
ĐỀ TÀI QUẦN THỂ ACROPOLE TRONG KIẾN TRÚC HI LẠP
26 trang 0 0 0 -
69 trang 0 0 0
-
Sáu sai lầm trong quản trị rủi ro
13 trang 0 0 0 -
23 trang 0 0 0
-
1 trang 1 0 0
-
105 trang 0 0 0
-
Đề thi học kì 1 môn Lịch sử và Địa lí lớp 4 năm 2023-2024 có đáp án - Trường Tiểu học Đại Thịnh B
4 trang 0 0 0 -
19 trang 0 0 0
-
58 trang 0 0 0