Danh mục

Ứng dụng của phép biến đổi Laplace để giải phương trình vi phân tuyến tính hệ số hằng

Số trang: 9      Loại file: pdf      Dung lượng: 312.39 KB      Lượt xem: 19      Lượt tải: 0    
Thư viện của tui

Phí tải xuống: 4,000 VND Tải xuống file đầy đủ (9 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Phương pháp chung ứng dụng của phép biến đổi Laplace để giải phương trình vi phân tuyến tính hệ số hằng, dùng công thức Duhamel,... là những nội dung chính trong tài liệu "Ứng dụng của phép biến đổi Laplace để giải phương trình vi phân tuyến tính hệ số hằng". Mời các bạn cùng tham khảo để có thêm tài liệu phục vụ nhu cầu học tập và nghiên cứu.
Nội dung trích xuất từ tài liệu:
Ứng dụng của phép biến đổi Laplace để giải phương trình vi phân tuyến tính hệ số hằng t t f ( t ) = ∫ 2 sin( t + τ)dτ + ∫ sin( t − 3τ)dτ 0 0 t t cos( t − 3τ) 1 1 = − cos( t + τ) 0 + = cost − cos2 t + cos2 t − cost 3 0 3 3 2 2 = cost − cos2 t 3 3 §19. ỨNG DỤNG CỦA PHÉP BIẾN ĐỔI LAPLACE ĐỂ GIẢI PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH HỆ SỐ HẰNG 1. Phương pháp chung: Giả sử ta cần tìm nghiệm của phương trình vi phân tuyến tính hệ số hằng: dn x d n −1x a o n + a 1 n −1 + L + a n x = f ( t ) (1) dt dt thoả mãn các điều kiện ban đầu: x(0) = xo, x’(0) = x1 ,.., x(n-1)(0) = xn-1 (2) với giả thiết ao ≠ 0, hàm f(t), nghiệm x(t) cùng các đạo hàm tới cấp n của nó đều là các hàm gốc. Để tìm nghiệm của bài toán trên ta làm như sau: bTrước hết ta lập phương trình ảnh của (1) bằng cách gọi X(p) là ảnh của x(t), F(p) là ảnh của f(t). Theo công thức đạo hàm gốc ta có: x’(t) = pX(p) - xo x”(t) = p2X(p) - pxo - x1 … x(n)(t) = pnX(p) - pn-1xo - ⋅⋅⋅ - xn-1 Lấy ảnh hai vế của (1) ta có phương trình đối với ảnh X(p): (aopn + a1pn-1 + ⋅⋅⋅ + an)X(p) = F(p) + xo(aopn-1 + a1pn-2 + ⋅⋅⋅ + an-1) + x1(aopn-1 + a1pn-2 + ⋅⋅⋅ + an-1) +⋅⋅⋅ + xn-1ao hay: A(p).X(p) = F(p) + B(p) (3) Trong đó A(p) và B(p) là các đa thức đã biết. Giải (3) ta có: F(p) + B(p) X ( p) = (4) A ( p) b Sau đó tìm gốc của X(p) ta được nghiệm của phương trình Ví dụ 1: Tìm nghiệm của phương trình x” - 2x’ + 2x = 2etcost thoả mãn điều kiện đầu x(0) = x’(0) = 0 Đặt x(t) ↔ X(p) thì x’(t) ↔ pX(p) và x”(t) ↔ p2X(p). 2(p − 1) 2(p − 1) Mặt khác 2e t cos t ↔ = 2 . Thay vào phương trình ta có: (p − 1) + 1 p − 2p + 2 2 119 2(p − 1) p 2 X − 2pX + 2X = p − 2p + 2 2 hay 2(p − 1) ( p 2 − 2 p + 2) X = p − 2p + 2 2 Giải ra ta được: 2(p − 1) X= 2 (p − 2p + 2) 2 Dùng phép biến đổi ngược ta có: x(t) = tetsint Ví dụ 2: Tìm nghiệm của phương trình x” - x = 4sint + 5cos3t thoả mãn các điều kiện ban đầu x(0) = -1, x’(0) = -2 5p Đặt x(t) ↔ X(p) thì x”(t) ↔ p2X + p + 2. Mặt khác 5cos2 t ↔ 2 và p +4 4 4 sint ↔ 2 . Thay vào phương trình trên ta được: p +1 4 5p p2X + p + 2 − X = 2 + 2 p +1 p + 4 nên: 4 5p p+2 X= 2 + 2 − 2 (p + 1)(p − 1) (p + 4)(p − 1) p − 1 2 2 2 2 p p p+2 = 2 − 2 + 2 − 2 − 2 p −1 p +1 p −1 p + 4 p −1 2 p =− 2 − 2 p +1 p + 4 Dùng phép biến đổi ngược ta được: x(t) = -2sint - cos2t Ví dụ 3: Tìm nghiệm của phương trình x” + 4x’ + 4x = t3e-2t thoả mãn các điều kiện ban đầu x(0) = 1, x’(0) = 2. Đặt x(t) ↔ X(p) thì x’(t) ↔ pX - 1, x”(t) ↔ p2X - p - 2. Mặt khác 3! 6 t 3e −2 t ↔ = . Thay vào phương trình trên ta được: (p + 2) 4 (p + 2) 4 6 p 2 X − p − 2 + 4pX − 4 + 4X = (p + 2) 4 Như vậy: 6 p+6 6 4 1 X= + = + + (p + 2) 6 (p + 2) 2 (p + 2) 6 (p + 2) 2 p + 2 120 −2 t −2 t1 5 −2 t −2 t ⎛ t5 ⎞ Vậy x(t) = x ( t ) = e + 4te + t e = e ⎜⎜1 + 4t + ⎟⎟ 20 ⎝ ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: