Bài giảng Đổi biến trong tích phân bội ba
Số trang: 38
Loại file: ppt
Dung lượng: 795.00 KB
Lượt xem: 15
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Đổi biến trong tích phân bội ba trình bày về tọa độ trụ; tọa độ cầu; một số mặt cong thường gặp trong tọa độ cầu; giao tuyến của mặt cầu và trụ; đổi biến cho hình cầu tổng quát, ellipsoid.
Nội dung trích xuất từ tài liệu:
Bài giảng Đổi biến trong tích phân bội ba ĐỔI BIẾN TRONG TÍCH PHÂN BỘI BA ĐỔI BIẾN TRONG TÍCH PHÂN BỘI BA f(x,y,z) xác định trong , đặt x = x(u,v,w) y = y(u,v,w) (x,y,z) (u,v,w) ’ z = z(u,v,w) xu xy xw D( x , y , z) J= = yu yv yw D (u , v , w ) zu zv zw � � �Ω f ( x , y , z)dxdydz = � � � Ω g (u , v ,w ) | J | dudvdw Áp dụng vào việc xét tính đối xứng của Nếu gồm 2 phần 1 và 2 đối xứng nhau qua mp z = 0 1.f chẵn theo z : � � Ω � f ( x , y , z )dxdydz =2 � � Ω � f ( x , y , z )dxdydz 1 2.f lẻ theo z : � � Ω � f ( x , y , z )dxdydz = 0 Lưu ý: • Mp z = 0 là mp Oxy • Kết quả áp dụng tương tự nếu đối xứng qua mp • y = 0 (tính chẵn lẻ của f xét theo y) • x = 0 (tính chẵn lẻ của f xét theo x) TỌA ĐỘ TRỤ x = rcos , y = rsin , z = z z z M x r y (r = 2 x +y 2 ) M’ cố định z đổi sang tọa độ trụ hình chiếu D đổi sang tọa độ cực. TỌA ĐỘ TRỤ x = rcos , y = rsin , z = z J=r � � � Ω f ( x , y , z )dxdydz = � � � Ω f (r cos ϕ , r sin ϕ , z)rdrdϕ dz Điều kiện giới hạn: 1.r 0 2. [0, 2 ] hay [- , ] TỌA ĐỘ CẦU x = sin cos , z M y = sin sin , z = cos y x J= 2 sin Điều kiện giới hạn: 1. 0 2. [0, 2 ] hay [- , ] Lưu ý: 2 2 2 ρ = x +y +z x 2 + y 2 = ρ sin θ Tọa độ cầu thường dùng cho miền giới hạn bởi mặt cầu hoặc mặt nón và mặt cầu. Một số mặt cong thường gặp trong tđ cầu 2 2 x +y +z =R2 2 � ρ =R 0 ρ R 2 2 2 2 x +y +z R � 0 θ π 0 ϕ 2π ρ 2R cosθ 2 2 2 π x + y+ � z� 2Rz 0 θ 2 0 ϕ 2π 2 2 z 1 Nón trên. x + y = � tan θ = a a 2 2 2 R x +y =R � ρ = Trụ tròn. sin θ VÍ DỤ 1/ Vẽ miền lấy tp và đổi tp sau sang tọa độ trụ 4 4x−x2 2 � � � I = dx 0 0 dy xzdz 0 2 0 x 4 D = hc Ω : Oxy 0 y 4x − x 2 2 x = rcos , y = rsin , z = z :0 r 4cos , 0 0 z 2 z=2 y =0 x2 + y2 = 4x 4 4x−x2 2 z=0 I = dx� 0 � 0 � 0 dy xzdz π 2 4cos ϕ 2 = dϕ dr r cos ϕ .z.rdz 0 0 0 2/ Vẽ miền lấy tp và đổi tp sau sang tọa độ trụ, cầu: 2 4− y 2 0 � I = dy 0 � 0 dx � xzdz − 4− x 2 − y 2 2 4− y 2 0 x = rcos , � � I = dy 0 0 dx � xzdz y = rsin , − 4− x 2 − y 2 z=z π 2 2 0 I= dϕ dr r cos ϕ .z.rdz 0 0 − 4−r 2 2 4− y 2 0 � I = dy 0 ...
Nội dung trích xuất từ tài liệu:
Bài giảng Đổi biến trong tích phân bội ba ĐỔI BIẾN TRONG TÍCH PHÂN BỘI BA ĐỔI BIẾN TRONG TÍCH PHÂN BỘI BA f(x,y,z) xác định trong , đặt x = x(u,v,w) y = y(u,v,w) (x,y,z) (u,v,w) ’ z = z(u,v,w) xu xy xw D( x , y , z) J= = yu yv yw D (u , v , w ) zu zv zw � � �Ω f ( x , y , z)dxdydz = � � � Ω g (u , v ,w ) | J | dudvdw Áp dụng vào việc xét tính đối xứng của Nếu gồm 2 phần 1 và 2 đối xứng nhau qua mp z = 0 1.f chẵn theo z : � � Ω � f ( x , y , z )dxdydz =2 � � Ω � f ( x , y , z )dxdydz 1 2.f lẻ theo z : � � Ω � f ( x , y , z )dxdydz = 0 Lưu ý: • Mp z = 0 là mp Oxy • Kết quả áp dụng tương tự nếu đối xứng qua mp • y = 0 (tính chẵn lẻ của f xét theo y) • x = 0 (tính chẵn lẻ của f xét theo x) TỌA ĐỘ TRỤ x = rcos , y = rsin , z = z z z M x r y (r = 2 x +y 2 ) M’ cố định z đổi sang tọa độ trụ hình chiếu D đổi sang tọa độ cực. TỌA ĐỘ TRỤ x = rcos , y = rsin , z = z J=r � � � Ω f ( x , y , z )dxdydz = � � � Ω f (r cos ϕ , r sin ϕ , z)rdrdϕ dz Điều kiện giới hạn: 1.r 0 2. [0, 2 ] hay [- , ] TỌA ĐỘ CẦU x = sin cos , z M y = sin sin , z = cos y x J= 2 sin Điều kiện giới hạn: 1. 0 2. [0, 2 ] hay [- , ] Lưu ý: 2 2 2 ρ = x +y +z x 2 + y 2 = ρ sin θ Tọa độ cầu thường dùng cho miền giới hạn bởi mặt cầu hoặc mặt nón và mặt cầu. Một số mặt cong thường gặp trong tđ cầu 2 2 x +y +z =R2 2 � ρ =R 0 ρ R 2 2 2 2 x +y +z R � 0 θ π 0 ϕ 2π ρ 2R cosθ 2 2 2 π x + y+ � z� 2Rz 0 θ 2 0 ϕ 2π 2 2 z 1 Nón trên. x + y = � tan θ = a a 2 2 2 R x +y =R � ρ = Trụ tròn. sin θ VÍ DỤ 1/ Vẽ miền lấy tp và đổi tp sau sang tọa độ trụ 4 4x−x2 2 � � � I = dx 0 0 dy xzdz 0 2 0 x 4 D = hc Ω : Oxy 0 y 4x − x 2 2 x = rcos , y = rsin , z = z :0 r 4cos , 0 0 z 2 z=2 y =0 x2 + y2 = 4x 4 4x−x2 2 z=0 I = dx� 0 � 0 � 0 dy xzdz π 2 4cos ϕ 2 = dϕ dr r cos ϕ .z.rdz 0 0 0 2/ Vẽ miền lấy tp và đổi tp sau sang tọa độ trụ, cầu: 2 4− y 2 0 � I = dy 0 � 0 dx � xzdz − 4− x 2 − y 2 2 4− y 2 0 x = rcos , � � I = dy 0 0 dx � xzdz y = rsin , − 4− x 2 − y 2 z=z π 2 2 0 I= dϕ dr r cos ϕ .z.rdz 0 0 − 4−r 2 2 4− y 2 0 � I = dy 0 ...
Tìm kiếm theo từ khóa liên quan:
Đổi biến trong tích phân bội ba Tích phân bội ba Bài giảng Tích phân bội ba Tọa độ cầu Mặt cong trong tọa độ cầu Giao tuyến của mặt cầuTài liệu liên quan:
-
Giáo trình Bài tập toán cao cấp A3 - Trường Đại học Công nghiệp TP. HCM
64 trang 24 0 0 -
Giáo trình Toán cao cấp A3: Phần 1 - ĐH Sư phạm Kỹ thuật TPHCM
98 trang 24 0 0 -
46 trang 22 0 0
-
Bài giảng Giải tích 2: Chương 4 - TS. Nguyễn Văn Quang
40 trang 22 0 0 -
Bài giảng Giải tích 2: Đổi biến trong tích phân bội ba - Trần Ngọc Diễm
38 trang 21 0 0 -
Bài giảng Giải tích 2 - Chương 2: Tích phân bội
113 trang 20 0 0 -
Lý thuyết và bài tập Giải tích toán học (Tập 2): Phần 2
130 trang 20 0 0 -
Bài giảng Giải tích: Bài 2 - ThS. Nguyễn Hải Sơn
38 trang 20 0 0 -
Bài giảng Giải tích hàm nhiều biến – Chương 2: Tích phân bội
166 trang 19 0 0 -
Bài giảng Giải tích hàm nhiều biến: Chương 4 - TS. Đặng Văn Vinh
39 trang 17 0 0