Thông tin tài liệu:
Mục tiêu: + Về kiến thức: Qua bài này học sinh cần hiểu rõ: - Định nghĩa cực đại và cực tiểu của hàm số - Điều kiện cần và đủ để hàm số đạt cực đại hoặc cực tiểu. - Hiểu rỏ hai quy tắc 1 và 2 để tìm cực trị của hàm số.
Nội dung trích xuất từ tài liệu:
Giáo án đại số 12 nâng cao: CỰC TRỊ CỦA HÀM SỐ Giáo Án Nâng Cao Ngày soạn: 11/08/2008 Số tiết: 02 ChươngI §2 CỰC TRỊ CỦA HÀM SỐ I. Mục tiêu: + Về kiến thức: Qua bài này học sinh cần hiểu rõ: - Định nghĩa cực đại và cực tiểu của hàm số - Điều kiện cần và đủ để hàm số đạt cực đại hoặc cực tiểu. - Hiểu rỏ hai quy tắc 1 và 2 để tìm cực trị của hàm số. + Về kỹ năng: Sử dụng thành thạo quy tắc 1 và 2 để tìm cực trị của hàm số và một số bài toán có liền quan đến cực trị. + Về tư duy và thái độ: - Thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội. - Tư duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Bảng phụ minh hoạ các ví dụ và hình vẽ trong sách giáo khoa. + Học sinh: làm bài tập ở nhà và nghiên cứu trước bài mới. III. Phương pháp: - Thuyết trình, kết hợp thảo luận nhóm và hỏi đáp. IV. Tiến trình bài học: 1. Ổn định tổ chức: kiểm tra sĩ số học sinh 2. Kiểm tra bài cũ: Câu hỏi: Xét sự biến thiên của hàm số: y = -x3 + 3x2 + 2Thời gian Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Gọi 1 học sinh lên trình bày - Trình bày bài giải (Bảng phụ 1)10’ bài giải. - Nhận xét bài giải của học sinh và cho điểm. - Treo bảng phụ 1 có bài giải hoàn chỉnh. 3. Bài mới: Tiết 1 Hoạt động 1: Tìm hiểu khái niệm cực trị của hàm sốThời gian Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Yêu cầu học sinh dựa vào 8’ BBT (bảng phụ 1) trả lời 2 câu hỏi sau: * Nếu xét hàm số trên - Trả lời : f(x) f(0) khoảng (-1;1); với mọi x (1;1) thì f(x) f(0) hay Trường THPT Tây Giang 1 Giáo Án Nâng Cao f(x) f(0)? * Nếu xét hàm số trên - Trả lời : f(2) f(x) khoảng (1;3); ( với mọi x (1;1) thì f(x) f(2) hay f(x) f(2)? - Từ đây, Gv thông tin điểm x - Học sinh lĩnh hội, ghi nhớ. = 0 là điểm cực tiểu, f(0) là giá trị cực tiểu và điểm x = 2 là gọi là điểm cực đại, f(2) là giá trị cực đại. - Định nghĩa: - Gv cho học sinh hình thành (sgk trang 10) khái niệm về cực đại và cực tiểu. - Gv treo bảng phụ 2 minh hoạ hình 1.1 trang 10 và diễn giảng cho học sinh hình dung điểm cực đại và cực tiểu. - Gv lưu ý thêm cho học sinh: Chú ý (sgk trang 11) Hoạt động 2: Điều kiện cần để hàm số có cực trịThời gian Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Gv yêu cầu học sinh quan - Học sinh suy nghĩ và trả lời12’ sát đồ thị hình 1.1 (bảng phụ * Tiếp tuyến tại các điểm cực 2) và dự đoán đặc điểm của trị song song với trục hoành. tiếp tuyến tại các điểm cực trị * Hệ số góc của tiếp tuyến * Hệ số góc của cac tiếp này bằng bao nhiêu? tuyến này bằng không. * Giá trị đạo hàm của hàm số * Vì hệ số góc của tiếp tuyến tại đó bằng bao nhiêu? bằng giá trị đạo hàm của hàm số nên giá trị đạo hàm của hàm số đó bằng không. - Gv gợi ý để học sinh nêu - Học sinh tự rút ra định lý 1: - Định lý 1: định lý 1 và thông báo không (sgk trang 11) cần chứng minh. - Gv nêu ví dụ minh hoạ: Hàm số f(x) = 3x3 + 6 f ( x ) 9 x 2 , Đạo hàm của hàm số này bằng 0 tại x0 = 0. Tuy nhiên, hàm số này không đạt cực trị tại x0 = 0 vì: f’(x) = 9x2 0, x R nên hàm số này đồng biến trên R. - Gv yêu cầu học sinh thảo - Học sinh thảo luận theo luận theo nhóm để rút ra kết nhóm, rút ra kết luận: Điều ngược lại không đúng. Đạo Trường THPT Tây Giang 2 Giáo Án Nâng Cao ...