Danh mục

Tổng hợp đề thi tuyển sinh vào lớp 10 THPT môn Toán từ năm 2003 đến năm 2010 – Sở Giáo dục và Đào tạo Thanh Hóa

Số trang: 0      Loại file: pdf      Dung lượng: 212.10 KB      Lượt xem: 19      Lượt tải: 0    
Thu Hiền

Hỗ trợ phí lưu trữ khi tải xuống: 4,000 VND Tải xuống file đầy đủ (0 trang) 0
Xem trước 10 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tổng hợp đề thi tuyển sinh vào lớp 10 THPT môn Toán từ năm 2003 đến năm 2010 – Sở Giáo dục và Đào tạo Thanh Hóa là tư liệu phục vụ cho quá trình ôn luyện, củng cố kiến thức và luyện thi cho các bạn học sinh.
Nội dung trích xuất từ tài liệu:
Tổng hợp đề thi tuyển sinh vào lớp 10 THPT môn Toán từ năm 2003 đến năm 2010 – Sở Giáo dục và Đào tạo Thanh Hóa www.vnmath.comĐề thi tuyển sinh vào lớp 10 chuyên toán trường THPT chuyên Lam Sơn Thanh Hoá ================================================ www.vnmath.com 1 www.vnmath.comSỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2003-2004 Đề chính thức MÔN: THI TOÁN Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 27 tháng 6 năm 2003 Bài 1. (2 điểm) x2 + x x - x - x Cho A  x + x a, Hãy rút gọn biểu thức A b, Tìm x thoả mãn A = x - 2 + 1 . Bài 2. (2 điểm) Cho phương trình: x2 - 4( m – 1 )x + 4m – 5 = 0. (1) a, Tìm m để phương trình (1) có hai nghiệm x1, x2 thoả mãn x12 + x 22 = 2m . b, Tìm m để P = x12 + x 22 + x1x 2 có giá trị nhỏ nhất. Bài 3. (2,5 điểm) Cho tam giác ABC nội tiếp trong đường tròn O và đường kính DE vuông góc với BC. Gọi D1E1 và D2E2 là hình chiếu vuông góc của DE trên AB và AC. 1. Chứng minh BE1 = E2C = AD1; D1E1 = AC và D2E2 = AB. 2. Các tứ giác AD1DD2 ; AE1EE2 nội tiếp trong một đường tròn và D1D2 vuông góc với E1E2. Bài 4. (2 điểm) Cho hình chopSABC có SA  AB; SA  AC; BA  BC; BA = BC; AC = a 2 ; SA = 2a. a, Chứng minh BC  mp(SAB) b, Tính diện tích toàn phần của chóp SABC. Bài 5. (1,5 điểm) Cho các số thực a1; a2; ….; a2003 thoả mãn: a1 + a2 + …+ a2003 = 1. 1 Chứng minh: a12 + a 22 + ... + a 2003 2  . 2003 --------------------------------------------- Hết ------------------------------------------------ www.vnmath.com 2 www.vnmath.comSỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2004-2005 Đề chính thức MÔN: TOÁN (Dành cho học sinh thi vào lớp chuyên Nga - Pháp) Thời gian: 150 phút (không kể thời gian giao đề) ----------------------------------------- Bài 1. (2 điểm) Gọi x1, x2 là các nghiệm của phương trình: 2x2 + 2mx + m2 – 2 = 0. 1 1 1. Với giá trị nào của m thì: + + x1 + x 2 = 1 . x1 x2 2. Tìm giá trị lớn nhất của biểu thức: A = 2x 2 x 2 + x1 + x 2 - 4 . Bài 2. (1,5 điểm) Giải phương trình: (x2 + 3x + 2)(x2 + 7x + 12) = 120. Bài 3. (2 điểm) x y + y x = 6 Giải hệ phương trình:  2 2 .  x y + y x = 20 Bài 4. (3,5 điểm) Cho M là điểm thay đổi trên đường tròn (O), đường kính AB. Đường tròn (E) tâm E tiếp xúc trong với đường tròn (O) tại M và AB tại N. Đường thẳng MA, MB cắt đường tròn (E) tại các điểm thứ hai C và D khác M. 1. Chứng minh CD song song với AB. 2. Gọi giao điểm của MN với đường tròn (O) là K (K khác M). Chứng minh rằng khi M thay đổi thì điểm K cố định và tích KM.KN không đổi. 3. Gọi giao điểm của CN với KB là C và giao điểm của DN với KA là D. Tìm vị trí của M để chu vi tam giác NCD nhỏ nhất. Bài 5. (1 điểm) Tìm giá trị nhỏ nhất của biểu thức: y = 2x 2 + 2x + 1+ 2x 2 - 4x + 4 . ---------------------------------------------- Hết ------------------------------------------------ www.vnmath.com 3 www.vnmath.comSỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2004-2005 Đề chính thức MÔN: TOÁN (Dành cho học sinh thi vào lớp chuyên Tin) Thời gian: 150 phút (không kể thời gian giao đề) Bài 1. (1,0 điểm) Cho hai phương trình: x2 + ax + 1 = 0 và x2 + bx + 17 = 0. Biết hai phương trình có nghiệm chung và a + b nhỏ nhấ. Tìm a và b. Bài 2. (2 điểm) Giải phương trình: x + x - 5 + x + x 2 - 5x = 20 . Bài 3. (2,5 điểm)  x 3 + y3 = 1 1. Giải hệ phương trình:  7 7 4 4 .  x + y = x + y 2. Tìm nghiệm nguyên của phương trình: x3 + y3 + 6xy = 21. Bài 4. (2,5 điểm) Cho tam giác nhọn ABC nội tiếp đường tròn (O) tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM lần lượt tại E và F. 1. Chứng minh tứ giác BCÈ nội tiếp được trong đường tròn. 2. Biết đường tròn nội tiếp tam giác ABC có tâm I bán kính r. Chứng minh: IB.IC = 2r.IM. Bài 5. (2 điểm) 1. Cho các số a, b thoả mãn các điều kiện : 0  a  3 , 8  b  11 và a + b = 11. Tìm giá trị lớn nhất của tích P = ab. ...

Tài liệu được xem nhiều:

Tài liệu liên quan: