Danh mục

Đề khảo sát chất lượng lớp 12, lần 3 môn Toán (năm học 2013)

Số trang: 10      Loại file: pdf      Dung lượng: 972.46 KB      Lượt xem: 13      Lượt tải: 0    
10.10.2023

Hỗ trợ phí lưu trữ khi tải xuống: 1,000 VND Tải xuống file đầy đủ (10 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mời các bạn cùng tham khảo "Đề khảo sát chất lượng lớp 12, lần 3 môn Toán (năm học 2013)" của Trường Đại học Vinh dành cho các bạn khối A, A1. Đề thi gồm có hai phần, phần chung dành cho tất cả các thí sinh, phần riêng thí sinh lựa chọn có kèm hướng dẫn làm bài. Mời các bạn cùng tìm hiểu và tham khảo nội dung thông tin tài liệu.
Nội dung trích xuất từ tài liệu:
Đề khảo sát chất lượng lớp 12, lần 3 môn Toán (năm học 2013) www.VNMATH.com TRƯỜNG ĐẠI HỌC VINH ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12, LẦN 3 - NĂM 2013 TRƯỜNG THPT CHUYÊN Môn: TOÁN; Khối: A và A1; Thời gian làm bài: 180 phútI. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 1 Câu 1 (2,0 điểm). Cho hàm số y = x 4 − 2mx 2 + 2 (1), với m là tham số. 3 4 a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = . 3 b) Tìm m để đồ thị của hàm số (1) có ba điểm cực trị tạo thành một tam giác có tâm đường tròn ngoại tiếp trùng gốc tọa độ O. Câu 2 (1,0 điểm). Giải phương trình sin 3x + (1 − cos x) cos 2 x = (sin x + 2 cos x) sin 2 x. Câu 3 (1,0 điểm). Giải phương trình 4(2 x 2 + 1) + 3( x 2 − 2 x) 2 x − 1 = 2( x 3 + 5 x). Câu 4 (1,0 điểm). Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường x +1 y= , y = 0, x = 3 xung quanh trục hoành. x2 + 3 Câu 5 (1,0 điểm). Cho hình lăng trụ ABC. A B C có các đáy là tam giác đều cạnh 3a. Hình chiếu vuông góc của C lên mặt phẳng ( ABC ) là điểm D thỏa mãn điều kiện DC = −2 DB . Góc giữa đường thẳng AC và mặt phẳng ( A B C ) bằng 450. Tính theo a thể tích khối lăng trụ ABC. A B C và tính côsin góc giữa hai đường thẳng BB và AD. Câu 6 (1,0 điểm). Cho các số thực không âm x, y, z thỏa mãn 1 + x 2 + 1 + 2 y + 1 + 2 z = 5 . Tìm giá trị lớn nhất của biểu thức P = 2 x 3 + y 3 + z 3 .II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần a hoặc phần b) a. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có B( 4 ; − 5), phương trình các đường thẳng chứa đường cao kẻ từ A và trung tuyến kẻ từ B lần lượt là x − 3 y − 7 = 0 và x + y + 1 = 0. Tìm tọa độ các điểm A và C biết diện tích tam giác ABC bằng 16. x −1 y z − 3 Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho các đường thẳng d1 : = = ; 1 1 2 x y − 2 z −1 x −3 y + 2 z d2 : = = ; d3 : = = . Tìm tọa độ điểm P thuộc d1 và điểm Q thuộc d 2 sao cho đường 1 2 1 −2 1 1 thẳng PQ vuông góc với d 3 và độ dài PQ nhỏ nhất. Câu 9.a (1,0 điểm). Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn z+i z +i + là số thuần ảo. z +1 z +1 b. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M (2 3; 2). Viết phương trình chính tắc của elíp (E) đi qua M biết rằng M nhìn hai tiêu điểm của (E) dưới một góc vuông. Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho điểm K (1; 3; 2) và mặt phẳng ( P) : x + y + z − 3 = 0. Viết phương trình đường thẳng d đi qua K, song song với mặt phẳng (Oyz ) và tạo với (P) một góc α có tan α = 2 . ⎧2 x.3 y − 3 x+2 = 3(6 x − 3 y ) Câu 9.b (1,0 điểm). Giải hệ phương trình ⎨ ( x, y ∈ R). ⎩log 2 (1 + x) + log 2 (2 + 2 xy) = 2(1 + log 2 y ) ---------------------------- Hết -------------------------- Ghi chú: 1. BTC sẽ trả bài vào các ngày 18, 19/5/2013. Để nhận được bài thi, thí sinh phải nộp lại phiếu dự thi cho BTC. 2. Kỳ khảo sát chất lượng lần cuối năm 2013 sẽ được tổ chức vào chiều ngày 15 và ngày 16/6/2013. Đăng kí dự thi tại văn phòng trường THPT Chuyên từ ngày 18/5/2013. www.VNMATH.com TRƯỜNG ĐẠI HỌC VINH ĐÁP ÁN ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12, LẦN 3 - NĂM 2013 TRƯỜNG THPT CHUYÊN Môn: TOÁN – Khối A, A1; Thời gian làm bài: 180 phút Câu Đáp án Điểm a) (1,0 điểm)Câu 1. 4 1 8 (2,0 Khi m = hàm số trở thành y = x 4 − x 2 + 2. 3 3 3điểm) 1o. Tập xác định: D = R , y là hàm số chẵn. 2o. Sự biến thiên: 1 8 2 * Giới hạn tại vô cực: lim y = lim x 4 ( − 2 + 4 ) = +∞. x → ±∞ x → ±∞ 3 3x x 4 16 * Chiều biến thiên: Ta ...

Tài liệu được xem nhiều:

Tài liệu liên quan: