Tài liệu tham khảo về bài tập trắc nghiệm luyện thi đại học về Phương trình - bất phương trình - hệ phương trình đại số. Đây là tài liệu khoá học phương pháp giải nhanh toán, dành cho học sinh hệ trung học phổ thông ôn thi tốt nghiệp và ôn thi đại học - cao đẳng tham khảo ôn tập và củng cố kiến thức.
Nội dung trích xuất từ tài liệu:
Đề luyện thi đại học: Phương trình - bất phương trình - hệ phương trình đại số Đề luyện tập số 2: Phương trình – bất phương trình – hệ phương trình đại số(Các em hãy cố gắng tự làm, lời giải thầy sẽ gửi sau 1 tuần, sau đó chúng ta cùng trao đổi từng bài ở Box dành riêng cho lớp luyện thi Toán VIP)Bài 1. Giải các phương trình chứa căn thức sau:1, x − 3 = 5 − 3x + 4 11, 3x − 2 + x − 1 = 4 x − 9 + 2 3 x 2 − 5 x + 22, x 2 + 5 x + 1 = ( x + 4) x 2 + x + 1 12, 3 2 − x = 1− x −13, 4 18 − x = 5 − 4 x − 1 13, x3 + 1 = 23 2x − 1 ( )4, 3 2 + x − 2 = 2 x + x + 6 14, 5 x 2 + 14 x + 9 − x 2 − x − 20 = 5 x + 15, 2 x2 + 8x + 6 + x2 −1 = 2 x + 2 15, 2 3 3x − 2 + 3 6 − 5 x = 86, x( x − 1) + x( x + 2) = 2 x 2 16, 2 x + 7 − 5 − x = 3x − 27, 3 x+ 4 − 3 x− 3 = 1 17, x + 2 7 − x = 2 x − 1 + − x 2 + 8 x − 7 + 1 x+38, x + 4 − x 2 = 2 + 3 x 4 − x 2 18, 2 x 2 + 4 x = 29, x 2 − 3x + 3 + x 2 − 3x + 6 = 3 19, −4 x 2 + 13 x − 5 = 3 x + 1 5 5 210, x2 + 2x + 4 = 3 x3 + 4x 20, − x2 + 1 − x2 + − x − 1 − x2 = x + 1 4 4Bài 2. Giải các bất phương trình vô tỷ sau:1, ( x − 3) x 2 − 4 ≤ x 2 − 9 5, x +1 > 3 − x + 42, x + 3 ≥ 2x − 8 + 7 − x 6, 5 x 2 + 10 x + 1 ≥ 7 − x 2 − 2 x 1 − 1 − 4x23, Bài 3. Giải các hệ phương trình sau: 1 3 2 x + y = x 1 1 x − y = y − x1, 9, 2 y + 1 = 3 2 y = x3 + 1 x y x (3 x + 2 y )( x + 1) = 12 x2 + y2 + x + y = 42, 2 10, x + 2 y + 4x − 8 = 0 x( x + y + 1) + y ( y + 1) = 2 x2 + y2 = 5 2x + y +1 − x + y = 1 3, 4 11, x − x y + y = 13 3 x + 2 y = 4 2 2 4 3 x 2 − 2 xy = 16 ( x 2 + 1) + y ( y + x ) = 4 y 4, 2 12, 2 x − 3xy − 2 y = 8 ( x + 1) ( y + x − 2 ) = y 2 x+5 + y −2 = 7 xy + x + 1 = 7 y5, 13, 2 2 x y + xy + 1 = 13 y 2 y +5 + x−2 = 7 2 xy x ( x + y + 1) − 3 = 0 x + 3 2 = x2 + y x − 2x + 96, 5 14, ( x + y ) − 2 + 1 = 0 2 xy 2 y + = y2 + x x 3 y − 2y + 9 2 y ( 36 x 2 + 25 ) = 60 x 2 2 xy + 3 x + 4 y = −6 15, z ( 36 y + 25 ) = 60 y 2 27, 2 x + 4 y + 4 x + 12 y = 3 2 x ( 36 z + 25 ) = 60 z 2 2 x 2 − xy + y 2 = 3( x − y ), x3 − 8 x = y3 + 2 y 8, 2 16, 2 x ...