Danh mục

Đề thi thử tuyển sinh đại học đợt 1 môn Toán (năm 2012-2013): Khối A

Số trang: 20      Loại file: pdf      Dung lượng: 321.94 KB      Lượt xem: 9      Lượt tải: 0    
Hoai.2512

Phí tải xuống: 13,000 VND Tải xuống file đầy đủ (20 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mời các bạn học sinh, sinh viên cùng tham khảo "Đề thi thử tuyển sinh đại học đợt 1 môn Toán (năm 2012-2013): Khối A" của Trường THPT Bỉm Sơn. Đề thi gồm có hai phần là phần chung dành cho tất cả các thí sinh, phần riêng thí sinh chỉ được chọn một trong hai phần chương trình chuẩn hoặc chương trình nâng cao. Đề thi có kèm đáp án. Cùng tìm hiểu để nắm bắt nội dung thông tin tài liệu.
Nội dung trích xuất từ tài liệu:
Đề thi thử tuyển sinh đại học đợt 1 môn Toán (năm 2012-2013): Khối A SỞ GD VÀ ĐT THANH HÓA ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 TRƯỜNG THPT BỈM SƠN Môn: Toán - Khối A (Thời gian làm bài: 180 phút)Phần I: Phần chung cho tất cả các thí sinh (7,0 điểm)Câu I. (2 điểm) Cho hàm số y = x 3 − 3 x 2 + 4 (C ) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Viết phương trình đường thẳng (d) cắt đồ thị (C) tại ba điểm phân biệt M(2; 0), N, P sao chotiếp tuyến của (C) tại N và P vuông góc với nhau.Câu II. (2 điểm) 1 2 ( cos x − sin x ) 1. Giải phương trình: = . tan x + cot 2 x cot x − 1  x 2 + 21 = y − 1 + y 2  2. Giải hệ phương trình:   y 2 + 21 = x − 1 + x 2Câu III. (1 điểm) Giải phương trình: 3 3 x − 5 = 8 x3 − 36 x 2 + 53 x − 25Câu IV. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA vuông gócvới đáy. Góc tạo bởi SC và mặt phẳng (SAB) bằng 300. Gọi E là trung điểm của BC. Tính thể tíchkhối chóp S.ABCD và khoảng cách giữa hai đường thẳng DE, SC theo a.Câu V. (1 điểm) Cho các số dương x, y, z thỏa mãn xy + yz + zx = 3 . Chứng minh rằng: 1 4 3 + ≥ xyz ( x + y )( y + z )( z + x ) 2Phần II: Phần riêng (3 điểm): thí sinh chỉ được chọn một trong hai phần.A. Theo chương trình chuẩnCâu VIa.(2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD tâm I(2; 1) và AC = 2BD.  1Điểm M  0;  thuộc đường thẳng AB, điểm N(0; 7) thuộc đường thẳng CD. Tìm tọa độ đỉnh B  3biết B có hoành độ dương. x2 y 2 2. Trong mặt phẳng với hệ tọa độ Oxy, cho Elip có phương trình chính tắc ( E ) : + =1. 25 9Viết phương trình đường thẳng song song với Oy và cắt (E) tại hai điểm A, B sao cho AB = 4.CâuVIIa. (1 điểm) Tìm hệ số của x5 trong khai triển biểu thức P = x (1 − 2 x ) + x 2 (1 + 3 x ) , biết n 2nrằng An2 − Cnn+−11 = 5 .B. Theo chương trình nâng cao.Câu VIb.(2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 22, biết rằngcác đường thẳng AB, BD lần lượt có phương trình là 3 x + 4 y + 1 = 0 và 2 x − y − 3 = 0 . Tìm tọa độcác đỉnh A, B, C, D. 2. Trong mặt phẳng với hệ tọa độ Oxy, lập phương trình chính tắc của Elip (E) biết rằng có mộtđỉnh và hai tiêu điểm của (E) tạo thành một tam giác đều và chu vi hình chữ nhật cơ sở của (E) là (12 2 + 3 )Câu VIIb. (1 điểm) Tìm số nguyên dương n sao cho: 1 C21n +1 − 2.2.C22n +1 + 3.22.C23n +1 − 4.23.C24n +1 + ... + ( 2n + 1) 22 n.C22nn++11 = 2013 …………………..Hết…………………. ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN I KHỐI ACâu Nội dung Điểm y = x − 3 x + 4 (C ) 3 2 + Tập xác định: D = ℝ + Giới hạn: lim y = −∞, lim y = +∞ 0.25 x →−∞ x →+∞ x = 0 + Đaọ hàm y = 3 x 2 − 6 x; y = 0 ⇔  x = 2 BBT: x -∞ 0 2 +∞ 0.25 y’ + - + y 4 +∞ -∞ 0 Hàm số đồng biến trên các khoảng ( −∞; 0 ) , ( 2; +∞ ) , nghịch biến trên khoảng ( 0; 2 ) Hàm số đạt cực đại tại x = 0, yCD = 4 0.25 Hàm số đạt cực tiểu tại x = 2, yCT = 0I.1 + Đồ thị: Đồ thị hàm số đi qua điểm (-1; 0) và nhận điểm I(1; 2) làm tâm đối xứng 8 6 4 2 ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: